Browse > Article
http://dx.doi.org/10.4134/JKMS.2005.42.6.1231

CONSERVATIVE MINIMAL QUANTUM DYNAMICAL SEMIGROUPS GENERATED BY NONCOMMUTATIVE ELLIPTIC OPERATORS  

Bahn, Chang-Soo (Natural Science Research Institute Yonsei University)
Ko, Chul-Ki (Natural Science Research Institute Yonsei University)
Publication Information
Journal of the Korean Mathematical Society / v.42, no.6, 2005 , pp. 1231-1249 More about this Journal
Abstract
By employing Chebotarev and Fagnola's sufficient conditions for conservativity of minimal quantum dynamical semigroups [7, 8], we construct the conservative minimal quantum dynamical semigroups generated by noncommutative elliptic operators in the sense of [2]. We apply our results to concrete examples.
Keywords
quantum dynamical semigroups; conservative semi­groups; noncommutative elliptic operators; dissipative operators;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 A. M. Chebotarev and S. Yu. Shustikov, Conditions suficient for the conservativity of a minimal quantum dynamical semigruop, Math. Notes 71 (2002), no. 5, 692-710   DOI
2 G. Lindblad, On the generator on dynamical semigroups, Comm. Math. Phys. 48 (1976), 119-130   DOI
3 A. M. Chebotarev and F. Fagnola, Suficient conditions for conservativity of quantum dynamical semigroups, J. Funct. Anal. 118 (1993), 131-153   DOI   ScienceOn
4 E. B. Davies, Quantum dynamical semigroups and the neutron diffusion equation, Rep. Math. Phys. 11 (1977), 169-188   DOI   ScienceOn
5 F. Fagnola, Chebotarev's suficient conditions for conservativity of quantum dynamical semigroups, Quantum Probab. Related Topics VII (1993), 123-142
6 F. Fagnola and R. Rebolledo, Subharmonic projections for a quantum Markov semigroup, J. Math. Phys. 43 (2002), no. 2, 1074-1082   DOI   ScienceOn
7 J. M. Lindsay and K. B. Sinha, Feynman-Kac representaion of some noncommutative elliptic operators, J. Funct. Anal. 147 (1997), 400-419   DOI   ScienceOn
8 C. Bahn and Y. M. Park, Feynman-Kac representation and Markov property of semigroups generated by noncommutative elliptic operators, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 (2003), 103-121
9 C. K. Ko and Y. M. Park, Construction of a family of quantum Ornstein-Uhlenbeck semigroups, J. Math. Phys. 45 (2004), 609-627   DOI   ScienceOn
10 F. Fagnola and R. Rebolledo, On the existence of stationary states for quantum dynamical semigroup, J. Math. Phys. 42 (2001), 1296-1308   DOI   ScienceOn
11 B. V. R. Bhat and K. B. Sinha, Examples of unbounded generators leading to non-conservative minimal semigroups, Quantum Prob. Related Topics IX (1994), 89-103
12 O. Bratelli and D. W. Robinson, Operator algebras and quantum statistical mechanics 1, Springer, second edition, 1987
13 A. M. Chebotarev, Suficient conditions for conservativity of dynamical semi- groups, Thoeret. and Math. Phys. 80 (1989), no. 2, 804-818   DOI
14 A. M. Chebotarev, Suficient conditions for conservativism of a minimal dynamical semigroup, Math. Notes 52 (1993), 1067-1077   DOI
15 M. Reed and B. Simon, Method of modern mathmatical physics I, II, Academic press, 1980
16 A. Arnold and C. Sparber, Conservative quantum dynamical semigroups for mean-field quantum diffusion models, preprint, arXiv: math-ph/0309052v1
17 K. R. Parthasarathy, An Introduction to Qunatum stochastic Calclus, Monographs in Mathematics, Birkhauser, Basel, 1992
18 A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, New York, Berlin, Heidelberg, Tokyo, 1983
19 J. Derenzinski and V. Jaksic, Spectral theory of Paul-Fierz operators, J. Funct. Anal. 180 (2001), 243-327   DOI   ScienceOn
20 A. M. Chebotarev and F. Fagnola, Sufficient conditions for conservativity of minimal quantum dynamical semigroups, J. Funct. Anal. 153 (1998), 382-404   DOI   ScienceOn