1 |
A. M. Chebotarev and S. Yu. Shustikov, Conditions suficient for the conservativity of a minimal quantum dynamical semigruop, Math. Notes 71 (2002), no. 5, 692-710
DOI
|
2 |
G. Lindblad, On the generator on dynamical semigroups, Comm. Math. Phys. 48 (1976), 119-130
DOI
|
3 |
A. M. Chebotarev and F. Fagnola, Suficient conditions for conservativity of quantum dynamical semigroups, J. Funct. Anal. 118 (1993), 131-153
DOI
ScienceOn
|
4 |
E. B. Davies, Quantum dynamical semigroups and the neutron diffusion equation, Rep. Math. Phys. 11 (1977), 169-188
DOI
ScienceOn
|
5 |
F. Fagnola, Chebotarev's suficient conditions for conservativity of quantum dynamical semigroups, Quantum Probab. Related Topics VII (1993), 123-142
|
6 |
F. Fagnola and R. Rebolledo, Subharmonic projections for a quantum Markov semigroup, J. Math. Phys. 43 (2002), no. 2, 1074-1082
DOI
ScienceOn
|
7 |
J. M. Lindsay and K. B. Sinha, Feynman-Kac representaion of some noncommutative elliptic operators, J. Funct. Anal. 147 (1997), 400-419
DOI
ScienceOn
|
8 |
C. Bahn and Y. M. Park, Feynman-Kac representation and Markov property of semigroups generated by noncommutative elliptic operators, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 (2003), 103-121
|
9 |
C. K. Ko and Y. M. Park, Construction of a family of quantum Ornstein-Uhlenbeck semigroups, J. Math. Phys. 45 (2004), 609-627
DOI
ScienceOn
|
10 |
F. Fagnola and R. Rebolledo, On the existence of stationary states for quantum dynamical semigroup, J. Math. Phys. 42 (2001), 1296-1308
DOI
ScienceOn
|
11 |
B. V. R. Bhat and K. B. Sinha, Examples of unbounded generators leading to non-conservative minimal semigroups, Quantum Prob. Related Topics IX (1994), 89-103
|
12 |
O. Bratelli and D. W. Robinson, Operator algebras and quantum statistical mechanics 1, Springer, second edition, 1987
|
13 |
A. M. Chebotarev, Suficient conditions for conservativity of dynamical semi- groups, Thoeret. and Math. Phys. 80 (1989), no. 2, 804-818
DOI
|
14 |
A. M. Chebotarev, Suficient conditions for conservativism of a minimal dynamical semigroup, Math. Notes 52 (1993), 1067-1077
DOI
|
15 |
M. Reed and B. Simon, Method of modern mathmatical physics I, II, Academic press, 1980
|
16 |
A. Arnold and C. Sparber, Conservative quantum dynamical semigroups for mean-field quantum diffusion models, preprint, arXiv: math-ph/0309052v1
|
17 |
K. R. Parthasarathy, An Introduction to Qunatum stochastic Calclus, Monographs in Mathematics, Birkhauser, Basel, 1992
|
18 |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, New York, Berlin, Heidelberg, Tokyo, 1983
|
19 |
J. Derenzinski and V. Jaksic, Spectral theory of Paul-Fierz operators, J. Funct. Anal. 180 (2001), 243-327
DOI
ScienceOn
|
20 |
A. M. Chebotarev and F. Fagnola, Sufficient conditions for conservativity of minimal quantum dynamical semigroups, J. Funct. Anal. 153 (1998), 382-404
DOI
ScienceOn
|