Browse > Article
http://dx.doi.org/10.4134/JKMS.2005.42.4.827

STABILITY ANALYSIS OF BURSTING MODELS  

Lee, Eui-Woo (Department of Mathematics Soongsil University)
Publication Information
Journal of the Korean Mathematical Society / v.42, no.4, 2005 , pp. 827-845 More about this Journal
Abstract
In this paper, we present a general method for the stability analysis of some bursting models. Our method is geometric in the sense that we consider a flow-defined return map defined on a section and determine when the map is a contraction. We find that there are three different stability types in the codimension-1 planar bursters.
Keywords
bursting; stability; bifurcation; delayed behavior; singular perturbation;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 J. Rinzel and Y. S. Lee, On different mechanism for membrane potential bursting, In: Lecture Notes in Biomathematics, vol. 66 (pp. 19-33). Springer-Verlag, New York, 1986
2 D. Terman, Chaotic spikes arising from a model for bursting in excitable mem- branes, SIAM J. Appl. Math. 51 (1991), 1418-1450   DOI   ScienceOn
3 D. Terman, The transition from bursting to continuous spiking in excitable membrane models, J. Nonlinear Sci. 2 (1992), 135-182   DOI
4 A. N. Tihonov, On the dependence of the solutions of the differential equations on a small parameter, Mat. Sb. 31 (1948), 575-586
5 W. B. Adams and J. A. Benson, The generation and modulation of endogenous rhythmicity in the aplysia bursting pacemaker neurone R15, Progr. Biophys. Molec. Biol. 46 (1985), 1-49   DOI   ScienceOn
6 A. Sherman, J. Rinzel, and J. Keizer, Emergence of organized bursting in clusters of pancreatic ${\beta}$-cells by channel sharing, Biophys. J. 54 (1988), 411-425   DOI   ScienceOn
7 R. Bertram, M. J. Butte, T. Kiemel, and A. Sherman, Topological and phenomenological classification of bursting oscillations, Bull. Math. Biol. 57 (1995), 413-439   DOI
8 N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), 53-98   DOI
9 J. Rubin and D. Terman, Geometric singular perturbation analysis of neuronal dynamics, In: Handbook of Dynamical Systems, vol.3: Towards Applications, Elsevier, 2002
10 S. M. Baer, T. Erneux, and J. Rinzel, The slow passage through a Hopf bifurcation: delay, memory effects, and resonances, SIAM J. Appl. Math. 49 (1989), 55-71   DOI   ScienceOn
11 R. J. Butera, J. Rinzel, and J. C. Smith, Models of respiratory rhythm generation in the pre-Botzinger complex: I. Bursting pacemaker model, J. Neurophysiology 82 (1999), 382-397   DOI
12 T. R. Chay and J. Keizer, Minimal model for membrane oscillations in the pan- creatic $\beta$-cell, Biophys. J. 42 (1983), 181-190   DOI   ScienceOn
13 C. A. Del Negro, C. F. Hsiao, S. H. Chandler, and A. Garfinkel, Evidence for a novel bursting mechanism in rodent trigeminal neurons, Biophys. J. 75 (1998), 174-182   DOI   ScienceOn
14 G. de Vries, Multiple bifurcations in a polynomial model of bursting oscillations, J. Nonlinear Sci. 8 (1998), 281-316   DOI   ScienceOn
15 E. M. Izhikevich, Neural excitability, spiking and bursting, Inter. J. Bifur. Chaos 10 (2000), no. 6, 1171-1266   DOI   ScienceOn
16 G. B. Ermentrout and N. Kopell, Parabolic bursting in an excitable system coupled with a slow oscillation, SIAM J. Appl. Math. 46 (1986), 233-253   DOI   ScienceOn
17 M. Golubitsky, K. Josic, and T. J. Kaper, An unfolding theory approach to bursting in fast-slow systems, In: Global Analysis of Dynamical Systems (H.W. Broer, B. Krauskopf and G. Vegter, eds.), Institute of Physics Publ. (2001), 277-308
18 J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983
19 Y. A. Kuznetsov, Elements of applied bifurcation theory, Springer-Verlag, New York, 1995
20 E. Lee, Stability analysis of parabolic bursting, In preparation
21 E. Lee and D. Terman, Uniqueness and stability of periodic bursting solutions, J. Differential Equations 158 (1999), 48-78   DOI   ScienceOn
22 C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophys. J. 35 (1981), 193-213   DOI   ScienceOn
23 A. Nejshtadt, Asymptotic investigation of the loss of stability by an equilibrium as a pair of eigenvalues slowly cross the imaginary axis, Uspekhi Mat. Nauk 40 (1985), 190-191
24 R. E. Plant and M. Kim, On the mechanism underlying bursting in the Aplysia abdominal ganglion R-15 cell, Math. Biosci. 26 (1975), 357-375   DOI   ScienceOn
25 J. Rinzel, A formal classification of bursting mechanisms in excitable systems, In: Proceedings of the International Congress of Mathematicians, vol. 1 & 2 (pp. 1578-1593). American Mathematical Society, Providence, RI, 1987