Browse > Article
http://dx.doi.org/10.4134/JKMS.2003.40.3.563

A CHARACTERIZATION OF Ck×(C*) FROM THE VIEWPOINT OF BIHOLOMORPHIC AUTOMORPHISM GROUPS  

Kodama, Akio (Department of Mathematics Faculty of Science)
Shimizu, Satoru (Mathematical Institute Tohoku University)
Publication Information
Journal of the Korean Mathematical Society / v.40, no.3, 2003 , pp. 563-575 More about this Journal
Abstract
We show that if a connected Stein manifold M of dimension n has the holomorphic automorphism group Aut(M) isomorphic to $Aut(C^k {\times}(C^*)^{n - k})$ as topological groups, then M itself is biholomorphically equivalent to C^k{\times}(C^*)^{n - k}$. Besides, a new approach to the study of U(n)-actions on complex manifolds of dimension n is given.
Keywords
holomorphic automorphism groups; holomorphic equivalences; torus actions;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 S. Shimizu, Automorphisms and equivalence of bounded Reinhardt domains not containing the origin, Tohoku Math. J. 40 (1988), 119–152   DOI
2 S. Shimizu, Automorphisms of bounded Reinhardt domains, Japan. J. Math. 15 (1989), 385–414.
3 R. E. Greene and S. G. Krantz, Deformation of complex structures, estimates for the $\overline{\partial}$ equation, and stability of the Bergman kernel, Adv. Math. 43 (1982), 1–86.   DOI
4 S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, London, Toronto, Sydney and San Francisco, 1978
5 A. V. Isaev, Characterization of $C^n$ by its automorphism group, Proc. Steklov Inst. Math. 235 (2001), 103–106.
6 A. V. Isaev and N. G. Kruzhilin, Effective actions of the unitary group on complex manifolds, Canad. J. Math. 54 (2002), 1254–1279.   DOI   ScienceOn
7 W. Kaup, Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen, Invent. Math. 3 (1967), 43–70.   DOI
8 A. Kodama, Characterizations of certain weakly pseudoconvex domains $E({\kappa},{\alpha})$ in $C^n$, Tohoku Math. J. 40 (1988), 343–365.
9 A. Kodama and S. Shimizu, A group-theoretic characterization of the space obtained by omitting the coordinate hyperplanes from the complex Euclidean space, preprint, 2002
10 S. G. Krantz, Determination of a domain in complex space by its automorphism group, Complex Variables 47 (2002), 215–223.   DOI   ScienceOn
11 D. E. Barrett, E. Bedford, and J. Dadok, $T^n$-actions on holomorphically separable complex manifolds, Math. Z. 202 (1989), 65–82   DOI
12 N. G. Kruzhilin, Holomorphic automorphisms of hyperbolic Reinhardt domains, Math. USSR-Izv. 32 (1989), 15–38.   DOI   ScienceOn
13 I. Naruki, The holomorphic equivalence problem for a class of Reinhardt domains, Publ. Res. Inst. Math. Sci., Kyoto Univ. 4 (1968), 527–543
14 R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1986
15 P. Ahern and W. Rudin, Periodic Automorphisms of $C^n$, Indiana Univ. Math. J. 44 (1995), 287–303
16 D. N. Akhiezer, Lie Group Actions in Complex Analysis, Aspects of Mathematics E 27, Vieweg, Braunschweig/Wiesbaden, 1995
17 D. Burns, S. Shnider and R. O. Wells, On deformations of strictly pseudoconvex domains, Invent. Math. 46 (1978), 237–253   DOI