Browse > Article
http://dx.doi.org/10.4134/JKMS.2003.40.3.447

ALGEBRAIC KERNEL FUNCTIONS AND REPRESENTATION OF PLANAR DOMAINS  

Jeong, Moon-Ja (Department of Mathematics The University of Suwon)
Taniguchi, Masahiko (Department of Mathematics Graduate school of Science Kyoto University)
Publication Information
Journal of the Korean Mathematical Society / v.40, no.3, 2003 , pp. 447-460 More about this Journal
Abstract
In this paper we study the non-degenerate n-connected canonical domains with n>1 related to the conjecture of S. Bell in [4]. They are connected to the algebraic property of the Bergman kernel and the Szego kernel. We characterize the non-degenerate doubly connected canonical domains.
Keywords
conformal representation; Ahlfors map; Bergman kernel; Szego kernel; algebraic function, canonical domain;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 M. Trummer, An efficient implementation of a conformal mapping method based on the Szegő kernel, SIAM J. Numer. Anal. 23 (1986), 853–872.   DOI   ScienceOn
2 S. Bell, The Bergman kernel function and proper holomorphic mappings, Trans. Amer. Math. Soc. 270 (1982), 685–691.   DOI
3 S. Bell, The Cauchy Transform, Potential Theory, and Conformal Mapping, CRC Press, Boca Raton, 1992.
4 S. Bell, Complexity of the classical kernel functions of potential theory, Indiana Univ. Math. J. 44 (1995), 1337–1369.   DOI
5 S. Bell, Finitely generated function fields and complexity in potential theory in the plane, Duke Math. J. 98 (1999), 187-207.   DOI
6 S. Bell, A Riemann surface attached to domains in the plane and complexity in potential theory, Houston J. Math. 26 (2000), 277-297.
7 S. Bergman, The kernel function and conformal mapping, Math Surveys 5, Amer. Math. Soc., Providence, 1950.
8 S. Bochner and W. Martin, Several Complex Variables, Princeton Math. Ser. 10, Princeton Univ. Press, Princeton, 1948.
9 H. M. Farkas and I. Kra, Riemann Surfaces, Grad. Texts in Math. 71, Springer-Verlag, 1980
10 Y. Imayoshi and M. Taniguchi, An Introduction to Teichmüller Spaces, Springer-Verlag, Tokyo, 1992.
11 M. Jeong, The Szegő kernel and rational proper mappings between planar domains, Complex Variables Theory Appl. 23 (1993), 157–162.
12 M. Jeong and M. Taniguchi, Bell representation of finitely connected planar domains, Proc. Amer. Math. Soc., To appear.
13 N. Kerzman and E. M. Stein, The Cauchy kernel, the Szegő kernel, and the Riemann mapping function, Math. Ann. 236 (1978), 85–93.   DOI
14 N. Kerzman and M. Trummer, Numerical conformal mapping via the Szegő ker-nel, Special issue on numerical conformal mapping, J. Comput. Appl. Math. 14 (1986), 111–123.   DOI   ScienceOn
15 O. Lehto, Univalent Functions and Teichmuller Spaces, Grad. Texts in Math. 109, Springer-Verlag, New York, 1987.
16 S. M. Natanzon, Hurwitz spaces, Topics on Riemann surfaces and Fuchsian Groups, London Math. Soc. Lecture Note Ser. 287 (2001), 165-177.