Browse > Article
http://dx.doi.org/10.14368/jdras.2021.37.1.31

Heme effects of hemin on growth of peridontopathogens  

Yoo, Hyun-Jun (Department of Preventive Dentistry, College of Dentistry, Dankook University)
Lee, Sung-Hoon (Department of Oral Microbiology and Immunology, College of Dentistry, Dankook University)
Publication Information
Journal of Dental Rehabilitation and Applied Science / v.37, no.1, 2021 , pp. 31-38 More about this Journal
Abstract
Purpose: The purpose of this study was to investigate effect of heme on periodontopathogens. Materials and Methods: The experiment was performed using 7 types of anaerobic bacteria present in the periodontal pocket. The bacteria were cultured using suitable medium in an anaerobic condition with or without hemin, and the growth of the bacteria was measured every 6 hours by a spectrophotometer. Results: the growth of Porphyromonas gingivalis was different only by the presence or absence of hemin. The growth of other periodontopathogens except Treponema denticola was different in a hemin concentration-dependent manner. The growth of T. denticola was interfered by hemin. Conclusion: Heme may be a factor that leads dysbiosis in the microbial ecosystem of the subgingival plaque and thereby promote a periodontitis-causing environment.
Keywords
hemin; periodontopathogen; dysbiosis; growth;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu X, Olczak T, Guo HC, Dixon DW, Genco CA. Identification of amino acid residues involved in heme binding and hemoprotein utilization in the Porphyromonas gingivalis heme receptor HmuR. Infect Immun 2006;74:1222-32.   DOI
2 Rouault TA. Microbiology. Pathogenic bacteria prefer heme. Science 2004;305:1577-8.   DOI
3 Al-Qutub MN, Braham PH, Karimi-Naser LM, Liu X, Genco CA, Darveau RP. Hemin-dependent modulation of the lipid A structure of Porphyromonas gingivalis lipopolysaccharide. Infect Immun 2006;74:4474-85.   DOI
4 Lee HR, Rhyu IC, Kim HD, Jun HK, Min BM, Lee SH, Choi BK. In-vivo-induced antigenic determinants of Fusobacterium nucleatum subsp. nucleatum. Mol Oral Microbiol 2011;26:164-72.   DOI
5 Yu F, Anaya C, Lewis JP. Outer membrane proteome of Prevotella intermedia 17: identification of thioredoxin and iron-repressible hemin uptake loci. Proteomics 2007;7:403-12.   DOI
6 Aguilera O, Andres MT, Heath J, Fierro JF, Douglas CW. Evaluation of the antimicrobial effect of lactoferrin on Porphyromonas gingivalis, Prevotella intermedia and Prevotella nigrescens. FEMS Immunol Med Microbiol 1998;21:29-36.   DOI
7 Liu LY, McGreor N, Wong BK, Butt H, Darby IB. The association between clinical periodontal parameters and free haem concentration within the gingival crevicular fluid: a pilot study. J Periodontal Res 2016;51:86-94.   DOI
8 Loesche WJ. Chemotherapy of dental plaque infections. Oral Sci Rev 1976;9:65-107.
9 Olczak T, Simpson W, Liu X, Genco CA. Iron and heme utilization in Porphyromonas gingivalis. FEMS Microbiol Rev 2005;29:119-44.   DOI
10 Lee SH, Baek DH. Effects of Streptococcus thermophilus on volatile sulfur compounds produced by Porphyromonas gingivalis. Arch Oral Biol 2014;59:1205-10.   DOI
11 Lee SH, Baek DH. Characteristics of Porphyromonas gingivalis lipopolysaccharide in co-culture with Fusobacterium nucleatum. Mol Oral Microbiol 2013;28:230-8.   DOI
12 Marsh PD. Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 1994;8:263-71.   DOI
13 Dahlen GG. Black-pigmented gram-negative anaerobes in periodontitis. FEMS Immunol Med Microbiol 1993;6:181-92.   DOI
14 Socransky SS. Microbiology of periodontal disease - present status and future considerations. J Periodontol 1977;48:497-504.   DOI
15 O'Brien-Simpson NM, Veith PD, Dashper SG, Reynolds EC. Antigens of bacteria associated with periodontitis. Periodontol 2000 2004;35:101-34.   DOI
16 Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in subgingival plaque. J Clin Periodontol 1998;25:134-44.   DOI
17 Listgarten MA. The role of dental plaque in gingivitis and periodontitis. J Clin Periodontol 1988;15:485-7.   DOI
18 Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol 2012;10:717-25.   DOI
19 Wijnsma KL, Veissi ST, de Wijs S, van der Velden T, Volokhina EB, Wagener FADTG, van de Kar NCAJ, van den Heuvel LP. Heme as Possible Contributing Factor in the Evolvement of Shiga-Toxin Escherichia coli Induced Hemolytic-Uremic Syndrome. Front Immunol 2020;11:547406.   DOI
20 Muller-Eberhard U, Fraig M. Bioactivity of heme and its containment. Am J Hematol 1993;42:59-62.   DOI
21 Chaudhry SR, Hafez A, Rezai Jahromi B, Kinfe TM, Lamprecht A, Niemela M, Muhammad S. Role of Damage Associated Molecular Pattern Molecules (DAMPs) in Aneurysmal Subarachnoid Hemorrhage (aSAH). Int J Mol Sci 2018;19:2035.   DOI