Browse > Article
http://dx.doi.org/10.14368/jdras.2020.36.2.112

Comparison of the outcomes of three-dimensional finite element analysis under arbitrary and realistic occlusal loading conditions in mandibular posterior region  

Lee, Wonsup (Department of Prosthodontics, School of Dentistry, Seoul National University)
Alom, Ghaith (Department of Prosthodontics, School of Dentistry, Seoul National University)
Kim, Myung-Soo (Department of Computer Science and Engineering, Seoul National University)
Park, Young-Seok (Department of Oral Anatomy, Seoul National University School of Dentistry and Dental Research Institute)
Lim, Young-Jun (Dental Research Institute and Department of Prosthodontics, School of Dentistry, Seoul National University)
Kim, Myung-Joo (Dental Research Institute and Department of Prosthodontics, School of Dentistry, Seoul National University)
Kwon, Ho-Beom (Dental Research Institute and Department of Prosthodontics, School of Dentistry, Seoul National University)
Publication Information
Journal of Dental Rehabilitation and Applied Science / v.36, no.2, 2020 , pp. 112-120 More about this Journal
Abstract
Purpose: The purpose of this study was to compare the biomechanical outcome in the mandibular posterior region between two different loading conditions by finite element analysis. Materials and Methods: The mandibular posterior teeth model and the implant model were generated for the study. And 2 different types of loading conditions were provided: Arbitrary occlusion and natural occlusion obtained from the digital occlusal analyzer, Accura (Accura, Dmetec Co. Ltd., Seoul, Korea). Total load of 100 N was evenly distributed over arbitrary occlusion points, and 100 N load was differentially distributed over natural occlusion points according to Accura data. The biomechanical outcome was evaluated by the finite element analysis software. Results: The result of finite element analysis showed considerable difference in both von Mises stress pattern and displacement under different loading conditions. Conclusion: In finite element analysis, it is recommended to simulate a realistic occlusal loading pattern that is based on accurate measurement.
Keywords
digital occlusal analyzer; occlusion; finite element analysis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent 2001;85:585-98.   DOI
2 DeTolla DH, Andreana S, Patra A, Buhite R, Comella B. Role of the finite element model in dental implants. J Oral Implantol 2000;26:77-81.   DOI
3 Trivedi S. Finite element analysis: a boon to dentistry. J Oral Biol Craniofac Res 2014;4:200-3.   DOI
4 Shetty P, Hegde AM, Rai K. Finite element method-an effective research tool for dentistry. J Clin Pediatr Dent 2010;34:281-5.   DOI
5 Eskitascioglu G, Usumez A, Sevimay M, Soykan E, Unsal E. The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: a three-dimensional finite element study. J Prosthet Dent 2004;91:144-50.   DOI
6 Hernandez-Vazquez RA, Romero-Angeles B, Urriolagoitia-Sosa G, Vazquez-Feijoo JA, Vazquez-Lopez AJ, Urriolagoitia-Calderon G. Numerical analysis of masticatory forces on a lower first molar considering the contact between dental tissues. Appl Bionic Biomech 2018:2018:4196343.   DOI
7 Benazzi S, Grosse IR, Gruppioni G, Weber GW, Kullmer O. Comparison of occlusal loading conditions in a lower second premolar using three-dimensional finite element analysis. Clin Oral Investig 2014;18:369-75.   DOI
8 Brune A, Stiesch M, Eisenburger M, Greuling A. The effect of different occlusal contact situations on peri-implant bone stress - a contact finite element analysis of indirect axial loading. Mater Sci Eng C Mater Biol Appl 2019;99:367-73.   DOI
9 Chang Y, Tambe AA, Maeda Y, Wada M, Gonda T. Finite element analysis of dental implants with validation: to what extent can we expect the model to predict biological phenomena? A literature review and proposal for classification of a validation process. Int J Implant Dent 2018;4:7.   DOI
10 Roehrle O, Saini H, Ackland DC. Occlusal loading during biting from an experimental and simulation point of view. Dent Mater 2018;34:58-68.   DOI
11 Cailleteau JG, Rieger MR, Akin JE. A comparison of intracanal stresses in a post-restored tooth utilizing the finite element method. J Endodont 1992;18:540-4.   DOI
12 De Jager N, de Kler M, van der Zel JM. The influence of different core material on the FEA-determined stress distribution in dental crowns. Dent Mater 2006;22:234-42.   DOI
13 Kondo T, Wakabayashi N. Influence of molar support loss on stress and strain in premolar periodontium: a patient-specific FEM study. J Dent 2009;37:541-8.   DOI
14 Rand A, Stiesch M, Eisenburger M, Greuling A. The effect of direct and indirect force transmission on peri-implant bone stress - a contact finite element analysis. Comput Methods Biomech Biomed Engin 2017;20:1132-9.   DOI
15 Papavasiliou G, Kamposiora P, Bayne SC, Felton DA. Three-dimensional finite element analysis of stress-distribution around single tooth implants as a function of bony support prosthesis type and loading during function. J Prosthet Dent 1996;76:633-40.   DOI
16 Ausiello P, Apicella A, Davidson CL. Effect of adhesive layer properties on stress distribution in composite restorations - a 3D finite element analysis. Dent Mater 2002;18:295-303.   DOI
17 Jeong MY, Lim YJ, Kim MJ, Kwon HB. Comparison of two computerized occlusal analysis systems for indicating occlusal contacts. J Adv Prosthodont 2020;12:49-54.   DOI
18 Eskitascioglu G, Usumez A, Sevimay M, Soykan E, Unsal E. The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: a three-dimensional finite element study. J Prosthet Dent 2004;91:144-50.   DOI
19 Lanza A, Aversa R, Rengo S, Apicella D, Apicella A. 3D FEA of cemented steel glass and carbon posts in a maxillary incisor. Dent Mater 2005;21:709-15.   DOI
20 Mozayek RS, Allaf M, Abuharb MB. Efficacy of adding a supporting implant in stress distribution of long-span fixed partial dentures: a 3D finite element analysis. J Dent Res Dent Clin Dent Prospects 2016;10:81-6.   DOI
21 Coolidge ED. The thickness of the human periodontal membrane. J Am Dent Assoc 1937;24:1260-70.
22 Yoshida N, Koga Y, Peng CL, Tanaka E, Kobayashi K. In vivo measurement of the elastic modulus of the human periodontal ligament. Med Eng Phy 2001;23:567-72.   DOI
23 Cattaneo PM, Dalstra M, Melsen B. The finite element method: a tool to study orthodontic tooth movement. J Dent Res 2005;84:428-33.   DOI
24 Moroi HH, Okimoto K, Moroi R, Terada Y. Numeric approach to the biomechanical analysis of thermal effects in coated implants. Int J Prosthodont 1993;6:564-72.
25 Sano H, Ciucchi B, Matthews WG, Pashley DH. Tensile properties of mineralized and demineralized human and bovine dentin. J Dent Res 1994;73:1205-11.   DOI
26 Farah JW, Craig RG, Meroueh KA. Finite element analysis of three- and four-unit bridges. J Oral Rehabil 1989;16:603-11.   DOI
27 Jung WK, Lee WS, Kwon HB. Effects of abutment screw preload in two implant connection systems: a 3D finite element study. J Prosthet Dent 2019;122:474.e1-e8.
28 Jones ML, Hickman J, Middleton J, Knox J, Volp C. A validated finite element method study of orthodontic tooth movement in the human subject. J Orthod 2001;28:29-38.   DOI
29 Tanne K, Yoshida S, Kawata T, Sasaki A, Knox J, Jones ML. An evaluation of the biomechanical response of the tooth and periodontium to orthodontic forces in adolescent and adult subjects. Br J Orthod 1998;25:109-15.   DOI
30 Toms SR, Eberhardt AW. A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. Am J Orthod Dentofacial Orthop 2003;123:657-65.   DOI
31 Silva GC, Cornacchia TM, de Magalhaes CS, Bueno AC, Moreira AN. Biomechanical evaluation of screw-and cement-retained implant-supported prostheses: a nonlinear finite element analysis. J Prosthet Dent 2014;112:1479-88.   DOI
32 Quaresma SET, Cury PR, Sendyk WR, Sendyk C. A finite element analysis of two different dental implants: stress distribution in the prosthesis, abutment, implant, and supporting bone. J Oral Implantol 2008;34:1-6.   DOI
33 Wataha JC. Alloys for prosthodontic restorations. J Prosthet Dent 2002;87:351-63.   DOI
34 Jorn D, Kohorst P, Besdo S, Rucker M, Stiesch M, Borchers L. Influence of lubricant on screw preload and stresses in a finite element model for a dental implant. J Prosthet Dent 2014;112:340-8.   DOI
35 Inzana JA, Varga P, Windolf M. Implicit modeling of screw threads for efficient finite element analysis of complex bone-implant systems. J Biomech 2016;49:1836-44.   DOI
36 Lang LA, Kang B, Wang RF, Lang BR. Finite element analysis to determine implant preload. J Prosthet Dent 2003;90:539-46.   DOI
37 Hsu ML, Chen FC, Kao HC, Cheng CK. Influence of off-axis loading of an anterior maxillary implant: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2007;22:301-9.
38 Chang CL, Chen CS, Huang CH, Hsu ML. Finite element analysis of the dental implant using a topology optimization method. Med Eng Phys 2012;34:999-1008.   DOI
39 Martin WC, Woody RD, Miller BH, Miller AW. Implant abutment screw rotations and preloads for four different screw materials and surfaces. J Prosthet Dent 20011;86:24-32.   DOI