Browse > Article
http://dx.doi.org/10.11109/JAES.2015.21.3.83

A Bacterial Strain Identified as Bacillus licheniformis using Vitek 2 Effectively Reduced NH3 Emission from Swine Manure  

Lim, Joung-Soo (National Institute of Animal Science, R.D.A.)
Han, Deug-Woo (National Institute of Animal Science, R.D.A.)
Lee, Sang-Ryong (National Institute of Animal Science, R.D.A.)
Hwang, Ok-Hwa (National Institute of Animal Science, R.D.A.)
Kwag, Jung-Hoon (National Institute of Animal Science, R.D.A.)
Cho, Sung-Back (National Institute of Animal Science, R.D.A.)
Publication Information
Journal of Animal Environmental Science / v.21, no.3, 2015 , pp. 83-92 More about this Journal
Abstract
An attempt to produce more pigs in limited spaces inevitably generalized concentrated feeding operation (CFO). As concentrated pig production practice expanded, concerns on environmental issues grow concurrently. Since odor is the concerned most among those, we attempted to develop means to tackle odor emission from livestock operations. Previously, we excavated few microorganisms from pig manure and, one of them, Bacillus licheniformis was particularly useful to handle odor problem. In this study, we conducted our investigation to further characterize Bacillus licheniformis. Strain identification was conducted using Vitek 2 compact, and the optimal temperature and pH conditions to growth B. licheniformis were searched for by analyzing turbidity on O.D 600 nm. Results of this study can be summarized as these, (1) it was re-verified that the bacterial strain that purified from pig manure was, in fact, Bacillus licheniformis, (2) the bacterial growth was highest when the temperature was kept at $30^{\circ}C$, also (3) growth rate was dependent on media pH as it was high at neutral (6, 7 and 8) but dropped when it was diverged from neutral (4, 5, 9 and 10), and (4) regarding ammonia removal efficiency, B. licheniformis recorded 64% effectiveness after 48 h incubation and reached its highest (80%) at 72 h.
Keywords
Livestock; Manure; pH; Microorganism; Bacillus licheniformis;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Lee, E.Y., Lee, S.J., 2010. Emission characterization of ammonia produced from swine nightsoil. Kor. J. Microbiol. Biotechnol. 38, 308-314.
2 Lowe, P.D., 1995. Social issues and animal wastes: A European perspective. In: Proceedings of International Livestock Odor Conference. pp. 168-171. Iowa State Univ. College of Agric. Ames.
3 Mackie, R.T., Stroot, P.G., Barel, V.H., 1998. Biochemical identification and biological origin of key odor components in livestock waste. J. Anim. Sci. 76, 1331- 1342.   DOI
4 Min, T.S., Han, I.K., Chung, I.B., Kim, I.B., 1992. Effects of Dietary Supplementation with Antibiotics, Sulfur compound, Copper sulfate, Enzyme and Probiotics on the Growing Performance and Carcass Characteristics of Growing-Finishing Pigs. Kor. J. Anim. Feed. 16, 265-274.
5 Park, H.R., Han, I.K., Kim, J.W., Heo, K.N., 1994. Effects of dietary yeast culture products on the performance of broiler and Yeast colony in intestinal tracks. Kor. J. Anim. Nutr. Feed. 18, 346.
6 Priest, F.G., 1989. Products from bacilli. In Handbook of Biotechnology, Hopwood, C.F. (ed.), Plenum Press, NY. 2, 293-315.
7 Roboson, L.M., Chambliss, G.H., 1989. Celluases of bacterial origin. Enzyme Microb. Technol. 11, 626-644.   DOI   ScienceOn
8 Seddon, B., Edward, S.G., Rutland, L., 1996. Development of Bacillus species as antifungal agents in crop protection. In Lyr, H., Russell, P.R., Sisler, H.D., (eds) Modern fungicides and antifungal compounds. Intercept, Andover, UK. 155-160.
9 Shriver, J.A., Carter, S.D., Sutton, A.L., Richert, B.T., Senne, B.W., Pettery, L.A., 2003. Effects of adding fiber sources to reduced-crude protein, amino acid-supplemented diets on nitrogen excretion, growth performance, and carcass traits of finishing pigs. J. Anim. Sci. 81, 492-502.   DOI
10 김지영., 2001. Bacillus licheniformis의 설사원인균 억제효과. 석사학위논문.
11 Abriouel, H., Franz, CMAP., Ben Omar, N., Gálvez, A., 2011. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 35, 201-232.   DOI   ScienceOn
12 Altschul, S.F., Madden, T.L., Schäff, A.A., Zhang, J.H., Zhang, Z., Miller, W., Lipman, D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research. 25, 3389-3402.   DOI
13 Arbige, M.V., Pitcher, W.H., 1989. Industrial enzymology; a look towards the future. Trends Biotechnol. 7, 330-335.   DOI   ScienceOn
14 Asaka, O., Shoda, M., 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtiolis RB14, Appl. Environ. Microbiol. 62, 4081-40854.
15 Bella, L.A., Faust, R.M., Andreus, R., Goodman, N., 1985. Insecticidal bacilli. In Molecular Biology of the Bacilli, Dubnau, D. (ed.), Academic Press Inc., Orlando, Fla. 2, 186-210.
16 Berger, F., Li, H., White, D., Frazer, R., Leifet, C., 1996. Effect of pathogen inoculum, antagonist density, and plant species on biological control of Phytophthora and pythium damping-off by Bacillus subtilis Cot1 in high-humidity forgging glasshouse. Phytopathology. 86, 428-444.   DOI
17 Wang, Y., Cho, J.H., Chen, J.S., Huang, Y., Kim, H.J., Kim. I.H., 2009. The effect of probiotic BioPlus 2B on growth performance, dry matter and nitrogen digestibility and slurry noxious gas emission in growing pigs, Livestock Sci. 120, 35-43.   DOI   ScienceOn
18 Sutton, A.L., Kephart, K.B., Berstegen, M.W.A., Canh, T.T., Hobbs. P.J., 1999. Potential for reduction of odours compounds in swine manure through diet modification. J. Anim. Sci. 77, 430-439.   DOI
19 Tamminga, S., 1992. Gaseous pollutants by farm animal enterprises. In: Phillips, C., Piggins, D., (Ed.) Farm Animals and the Environment. CAB International, Wallingford, U.K. 345-357.
20 Thompson, J.D., Higgin, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progeressive multiple sequence alignment through sequence weifhting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.   DOI
21 Yakimov, M.M., Timmis, K.N., Wray, V., Fredrickson, H.H., 1995. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl. Environ. Microbiol. 61, 1706-1713.
22 Yang, E.J., Chang. H.C., 2007. Characterization of bacteriocin-like substances produced by Bacillus subtilis MJP1. Kor. J. Microbiol. Biotechnol. 35, 339-346.
23 Grangemard, I., Wallach, J., Maget-Dana, R., Peypoux. F., 2001. Lichenysin: A more efficient cation chelator than surfactin. Appl. Biochem. Biotechnol. 90, 199-210.   DOI   ScienceOn
24 Chiang, S.H., Hsieh, W.M., 1995. Effect of direct-fed microorganisms on broiler growth performance and litter ammonia level. Asian-Austral. J. Anim. Sci. 8, 159-162.
25 Dischinger, J., Josten, M., Szekat, C., Sahl, H., Bierbaum, G., 2009. Production of the novel two-peptide lantibiotic lichenicidin by Bacillus licheniformis DSM 13. PLoS One. 4, 1-11.   DOI   ScienceOn
26 Funke, G., Monnet, D., Debernardis, C., Vongraevenitz, A., Freney, J., 1998. Evaluation of the Vitek 2 system for rapid identification of medically relevant Gram negative rods, J Clin Microbiol, 36:1948-1952.
27 Kim, K.Y., Ko, H.J., Kim, H.T., Kim, Y.S., Roh, Y.M., Lee, C.M., Kim, C.N., 2008. Odor reduction rate in the confinement pig building by spraying various additives. Biores. Tech. 99, 8464-8469.   DOI   ScienceOn
28 Kim, D.W. Shin, J.H., Kee, S.J., Kim, S.H., Shin, M.G., Suh, S.P., Ryang, D.W., 2009. Evaluation of Vitek 2 antifungal susceptibility test (AST-YS01) for Candida species isolates from Korea, Kor Soci Clin Microbiol, 12, 122-128.   DOI   ScienceOn
29 Kim, Y.S., Kim, M.C., Kwon, S.W., Kim, S.J., Park, I.C., Ka, J.O., Weon, H.Y. 2011. Analyses of bacterial communities in meju, a Korean traditional fermented soybean bricks, by cultivation-basded and pyrosequencing methods. J. Microbiol., 49, 340-348.   DOI
30 Kleinkauf, H., von Dohren, H., 1983. Non-ribosomal peptide formation on multifunctional proteins. Trends Biochem. Sci. 8, 281-283.   DOI   ScienceOn
31 Lee, H., Kim, H.Y., 2011. Lantibiotics, class I bacteriocins from the genus Bacillus. J. Microbiol. Biotech. 21, 229-235.
32 Zuber, P., Nakano, M.M., Marahiel, M.A., 1993. Peptide antibiotics. In Bacillus subtilis and Other Gram-Positive Bacteria : Biochemistry, Physiology and Molecular Genetics, Sonenshein, A.L., Hoch, J.A. and Losick, R. (eds.), American Society for Microbiology, p. 897-916.
33 Gavin, P.J., Warren, J.R., Obias, A.A., Collins, S.M., Peterson, L.R., 2002. Evaluation of the Vitek 2 system for rapid identification of clinical isolates of gram-negative bacilli and members of the family Streptococcaceae, Eur J Clin Microbiol. infect. Dis, 21, 869-874.
34 Konz, D., Doekel, S., Marahiel, M.A., 1999. Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide licheysin, J. Bacteriol. 181, 133-140.
35 Santoso, U., Ohtani, S., Tanaka, K., Sakaide, M., 1999. Dried bacillus subtilis culture reduced ammonia gas release in poultry house. Asian-Aust. J. Anim. Sci. 12, 806-809.   DOI   ScienceOn
36 Jung, S.S., Choi, J.I., Joo, W.H., Suh, H.H., Na, A.S., Cho, Y.K., Moon, J.Y., Ha, K.C., Paik, D.H., Kang, D.O., 2009. Characterization and purification of the bacteriocin produced by Bacillus licheniformis isolated from soybean sauce. J. Life Sci. 19, 994-1002.   DOI   ScienceOn