Browse > Article
http://dx.doi.org/10.5851/kosfa.2018.e17

Construction of a Bioluminescent Labelling Plasmid Vector for Bifidobacteria  

Moon, Gi-Seong (Department of Biotechnology, Korea National University of Transportation)
Narbad, Arjan (Translational Microbiome (Narbad Group), Quadram Institute Bioscience)
Publication Information
Food Science of Animal Resources / v.38, no.4, 2018 , pp. 816-822 More about this Journal
Abstract
Bifidobacterium is recognized as one of the most beneficial microorganisms in our gut. Many researches on bifidobacteria have been done to understand their roles in the gut. The objective of the present study was to develop a bioluminescent labelling plasmid vector for bifidobacteria to facilitate their visualization in vitro, in situ, and in vivo. A plasmid replicon (2.0 kb) of plasmid pFI2576 previously identified from B. longum FI10564 was amplified by PCR and cloned into pUC19 plasmid vector (2.68 kb). The cloned replicon was subcloned into pTG262 ($luc^+$) recombinant plasmid vector (7.4 kb) where a luciferase gene ($luc^+$) from pLuc2 (8.5 kb), an Escherichia coli and lactobacilli shuttle vector, was inserted into pTG262 plasmid vector. The final recombinant DNA, pTG262::pFI2576 rep ($luc^+$), was transferred into a B. catenulatum strain. This recombinant strain showed 3,024 relative luminescence units at $OD_{600}$ value of 0.352. Thus, this recombinant plasmid construct can be broadly used for labelling bifidobacteria.
Keywords
Bifidobacterium; bioluminescence; luciferase gene; plasmid vector; replicon;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Rajani C, Jia W. 2018. Disruptions in gut microbial-host co-metabolism and the development of metabolic disorders. Clin Sci (Lond) 132:791-811.   DOI
2 Ruiz L, Delgado S, Ruas-Madiedo P, Sanchez B, Margolles A. 2017. Bifidobacteria and their molecular communication with the immune system. Front Microbiol 8:2345.   DOI
3 Sambrook J, Russell DW. 2001. Molecular cloning: A laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, New York, NY, USA. A3.2-3.3.
4 Sun L, Ma L, Ma Y, Zhang F, Zhao C, Nie Y. 2018. Insights into the role of gut microbiota in obesity: Pathogenesis, mechanisms, and therapeutic perspectives. Protein Cell 9:397-403.   DOI
5 Tejero-Sarinena S, Barlow J, Costabile A, Gibson GR, Rowland I. 2012. In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: Evidence for the effects of organic acids. Anaerobe 18:530-538.   DOI
6 Tengeler AC, Kozicz T, Kiliaan AJ. 2018. Relationship between diet, the gut microbiota, and brain function. Nutr Rev 76:603-617.   DOI
7 Zhang P, Meng X, Li D, Calderone R, Mao D, Sui B. 2018. Commensal homeostasis of gut microbiota-host for the impact of obesity. Front Physiol 8:1122.   DOI
8 Alard J, Peucelle V, Boutillier D, Breton J, Kuylle S, Pot B, Holowacz S, Grangette C. 2018. New probiotic strains for inflammatory bowel disease management identified by combining in vitro and in vivo approaches. Benef Microbes 9:317-331.   DOI
9 Argnani A, Leer RJ, van Luijk N, Pouwels PH. 1996. A convenient and reproducible method to genetically transform bacteria of the genus Bifidobacterium. Microbiology 142:109-114.   DOI
10 Allaire JM, Crowley SM, Law HT, Chang SY, Ko HJ, Vallance BA. 2018. The intestinal epithelium: Central coordinator of mucosal immunity. Trends Immunol (in press).
11 Cronin M, Akin AR, Francis KP, Tangney M. 2016. In vivo bioluminescence imaging of intratumoral bacteria. Methods Mol Biol 1409:69-77.
12 Cronin M, Sleator RD, Hill C, Fitzgerald GF, van Sinderen D. 2008. Development of a luciferase-based reporter system to monitor Bifidobacterium breve UCC2003 persistence in mice. BMC Microbiol 8:161.   DOI
13 Drouault S, Corthier G, Ehrlich SD, Renault P. 1999. Survival, physiology, and lysis of Lactococcus lactis in the digestive tract. Appl Environ Microbiol 65:4881-4886.
14 Grimm V, Gleinser M, Neu C, Zhurina D, Riedel CU. 2014. Expression of fluorescent proteins in bifidobacteria for analysis of host-microbe interactions. Appl Environ Microbiol 80:2842-2850.   DOI
15 Eom JE, Ahn WG, Her S, Moon GS. 2015. Construction of bioluminescent Lactobacillus casei CJNU 0588 for murine whole body imaging. Food Sci Biotechnol 24:595-599.   DOI
16 Escribano J, Ferre N, Gispert-Llaurado M, Luque V, Rubio-Torrents C, Zaragoza-Jordana M, Polanco I, Codoner FM, Chenoll E, Morera M, Moreno-Munoz JA, Rivero M, Closa-Monasterolo R. 2018. Bifidobacterium longum subsp. infantis CECT7210-supplemented formula reduces diarrhea in healthy infants: A randomized controlled trial. Pediatr Res 83:1120-1128.   DOI
17 Felis GE, Dellaglio F. 2007. Taxonomy of lactobacilli and bifidobacteria. Curr Issues Intest Microbiol 8:44-61.
18 Fernandez A, Horn N, Wegmann U, Nicoletti C, Gasson MJ, Narbad A. 2009. Enhanced secretion of biologically active murine interleukin-12 by Lactococcus lactis. Appl Environ Microbiol 75:869-871.   DOI
19 Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H. 2011. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543-547.   DOI
20 Guglielmetti S, Ciranna A, Mora D, Parini C, Karp M. 2008. Construction, characterization and exemplificative application of bioluminescent Bifidobacterium longum biovar longum. Int J Food Microbiol 124:285-290.   DOI
21 Kang J, Chung WH, Lim TJ, Lim S, Nam YD. 2017. Complete genome sequence of the Bifidobacterium animalis subspecies lactis BL3, preventive probiotics for acute colitis and colon cancer. New Microbes New Infect 19:34-37.
22 Moon GS, Narbad A. 2017. Monitoring of bioluminescent Lactobacillus plantarum in a complex food matrix. Korean J Food Sci An 37:147-152.   DOI
23 Karimi S, Ahl D, Vagesjo E, Holm L, Phillipson M, Jonsson H, Roos S. 2016. In vivo and in vitro detection of luminescent and fluorescent Lactobacillus reuteri and application of red fluorescent mCherry for assessing plasmid persistence. PLoS One 11:e0151969.   DOI
24 Kleerebezem M, Vaughan EE. 2009. Probiotic and gut lactobacilli and bifidobacteria: Molecular approaches to study diversity and activity. Annu Rev Microbiol 63:269-290.   DOI
25 Lee KH, Park WJ, Kim JY, Kim HG, Lee JM, Kim JH, Park JW, Lee JH, Chung SK, Chung DK. 2007. Development of a monitoring vector for Leuconostoc mesenteroides using the green fluorescent protein gene. J Microbiol Biotechnol 17:1213-1216.
26 Linares DM, Gomez C, Renes E, Fresno JM, Tornadijo ME, Ross RP, Stanton C. 2017. Lactic acid bacteria and bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Front Microbiol 8:846.   DOI
27 Matsuki T, Watanabe K, Fujimoto J, Kado Y, Takada T, Matsumoto K, Tanaka R. 2004. Quantitative PCR with 16S rRNAgene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol 70:167-173.   DOI
28 Moon GS, Wegmann U, Gunning AP, Gasson MJ, Narbad A. 2009. Isolation and characterization of a theta-type cryptic plasmid from Bifidobacterium longum FI10564. J Microbiol Biotechnol 19:403-408.   DOI
29 Ninomiya K, Yamada R, Matsumoto M, Fukiya S, Katayama T, Ogino C, Shimizu N. 2013. Image analyzing method to evaluate in situ bioluminescence from an obligate anaerobe cultivated under various dissolved oxygen concentrations. J Biosci Bioeng 115:196-199.   DOI
30 Ogawa M, Takakura H. 2018. In vivo molecular imaging for biomedical analysis and therapies. Anal Sci 34:273-281.   DOI