Browse > Article
http://dx.doi.org/10.5851/kosfa.2018.e9

Effects of a Novel p.A41P Mutation in the Swine Myogenic factor 5 (MYF5) Gene on Protein Stabilizing, Muscle Fiber Characteristics and Meat Quality  

Ryu, Youn-Chul (Division of Biotechnology, Sustainable Agriculture Research Institute, Jeju National University)
Lee, Eun-A (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Chai, Han-Ha (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration)
Park, Jong-Eun (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration)
Kim, Jun-Mo (Department of Animal Science and Technology, Chung-Ang University)
Publication Information
Food Science of Animal Resources / v.38, no.4, 2018 , pp. 711-717 More about this Journal
Abstract
Myogenic factor 5 (MYF5) plays an important role in regulating skeletal muscle fiber characteristics, consequently affecting meat production and quality. We identified a novel p.A41P mutation in exon1 of the porcine MYF5 gene by direct sequencing. The mutation was predicted to be destabilizing in protein structure based on the resultant amino acid substitution. We estimated the significant substitution effect of p.A41P on the energy stabilization of Myf5 protein structure. Then, we demonstrated that the mutation in Yorkshire population significantly affected muscle fiber type I composition (p<0.05), loin-eye area of lean meat content (p<0.05) and filter-fluid uptake of meat quality (p<0.01). Furthermore, dominant effects significantly influenced total muscle fiber number (p<0.05). This study suggests that the novel p.A41P mutation in porcine MYF5 may be a valuable genetic marker to affect the muscle fiber characteristics and consequently improve meat production quality and quantity.
Keywords
Myogenic factor 5 (MYF5); single nucleotide polymorphism (SNP); muscle fiber characteristics; lean meat content; meat quality;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Atchley WR, Fitch WM, Bronner-Fraser M. 1994. Molecular evolution of the MyoD family of transcription factors. Proc Natl Acad Sci 91:11522-11526.   DOI
2 Beylkin DH, Allen DL, Leinwand LA. 2006. MyoD, Myf5, and the calcineurin pathway activate the developmental myosin heavy chain genes. Dev Biol 294:541-553.   DOI
3 Braun T, Bober E, Arnold HH. 1992a. Inhibition of muscle differentiation by the adenovirus E1a protein: Repression of the transcriptional activating function of the HLH protein Myf-5. Genes Dev 6:888-902.   DOI
4 Braun T, Rudnicki MA, Arnold HH, Jaenisch R. 1992b. Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell 71:369-382.   DOI
5 Cepica S, Yerle M, Stratil A, Schroffel J, Redl B. 1999. Regional localization of porcine MYOD1, MYF5, LEP, UCP3 and LCN1 genes. Anim Genet 30:462-478.
6 da Silva Carmo FM, Guimaraes SEF, Lopes PS, Pires AV, Guimaraes MFM, da Silva MVGB, Schierholt AS, de Moraes e Silva K, de Miranda Gomide LA. 2005. Association of MYF5 gene allelic variants with production traits in pigs. Genet Mol Biol 28:363-369.   DOI
7 Jennen D, Brings A, Liu G, Jungst H, Tholen E, Jonas E, Tesfaye D, Schellander K, Phatsara C. 2007. Genetic aspects concerning drip loss and water-holding capacity of porcine meat. J Anim Breed Genet 124:2-11.   DOI
8 Foxcroft GR, Dixon WT, Novak S, Putman CT, Town SC, Vinsky MDA. 2006. The biological basis for prenatal programming of postnatal performance in pigs. J Anim Sci 84:E105-E112.   DOI
9 Gondret F, Lefaucheur L, Louveau I, Lebret B, Pichodo X, Le Cozler Y. 2005. Influence of piglet birth weight on postnatal growth performance, tissue lipogenic capacity and muscle histological traits at market weight. Livest Prod Sci 93:137-146.   DOI
10 Handel SE, Stickland NC. 1987. Muscle cellularity and birth weight. Anim Sci 44:311-317.
11 Kim JM, Choi BD, Kim BC, Park SS, Hong KC. 2009. Associations of the variation in the porcine myogenin gene with muscle fiber characteristics, lean meat production and meat quality traits. J Anim Breed Genet 126:134-141.   DOI
12 Klosowska D, Kuryl J, Elminowska-Wenda G, Kapelanski W, Walasik K, Pierzchala M, Cieslak D, Bogucka J. 2004. A relationship between the PCR-RFLP polymorphism in porcine MYOG, MYOD1 and MYF5 genes and microstructural characteristics of m. longissimus lumborum in Pietrain${\times}$(Polish Large White${\times}$Polish Landrace) crosses. Czech J Anim Sci 49(3):99-107.
13 Soumillion A, Vergouwe M, Erkens J, te Pas M, Rettenberger G, Lenstra J. 1997. Assignment of the porcine loci for MYOD1 to chromosome 2 and MYF5 to chromosome 5. Anim Genet 28:37-38.   DOI
14 Liu M, Peng J, Xu D, Zheng R, Li J, Zuo B, Lei M, Xiong Y, Deng C, Jiang S. 2007. Associations of MYF5 gene polymorphisms with meat quality traits in different domestic pig (Sus scrofa) populations. Genet Mol Biol 30:370-374.   DOI
15 Liu M, Peng J, Xu DQ, Zheng R, Li FE, Li JL, Zuo B, Lei MG, Xiong YZ, Deng CY. 2008. Association of MYF5 and MYOD1 gene polymorphisms and meat quality traits in Large White${\times}$Meishan F2 pig populations. Biochem Genet 46:720-732.   DOI
16 Olson EN. 1990. MyoD family: A paradigm for development? Genes Dev 4:1454-1461.   DOI
17 Paredes S, Kalbe C, Jansman A, Verstegen M, van Hees H, Losel D, Gerrits W, Rehfeldt C. 2013. Predicted high-performing piglets exhibit more and larger skeletal muscle fibers. J Anim Sci 91:5589-5598.   DOI
18 Rehfeldt C, Tuchscherer A, Hartung M, Kuhn G. 2008. A second look at the influence of birth weight on carcass and meat quality in pigs. Meat Sci 78:170-175.   DOI
19 Spassov VZ, Yan L. 2013. pH-selective mutagenesis of protein-protein interfaces: In silico design of therapeutic antibodies with prolonged half-life. Proteins: Struct, Funct, Bioinf 81:704-714.   DOI
20 te Pas MFW, Visscher AH. 1994. Genetic regulation of meat production by embryonic muscle formation-A review. J Anim Breed Genet 111:404-412.   DOI
21 te Pas M, Harders F, Soumillion A, Born L, Buist W. 1999. Genetic variation at the porcine MYF-5 gene locus. Lack of association with meat production traits. Mamm Genome 10:123-127.   DOI
22 Winter B, Braun T, Arnold HH. 1992. Co-operativity of functional domains in the muscle-specific transcription factor Myf-5. EMBO J 11:1843-1855.   DOI
23 Verner J, Humpolicek P, Knoll A. 2007. Impact of MYOD family genes on pork traits in Large White and Landrace pigs. J Anim Breed Genet 124:81-85.   DOI