Browse > Article
http://dx.doi.org/10.5851/kosfa.2014.34.5.614

Screening of Bacteriocin-producing Enterococcus faecalis Strains for Antagonistic Activities against Clostridium perfringens  

Han, Sun-Kyung (College of Veterinary Medicine, Chungbuk National University)
Shin, Myeong-Su (College of Veterinary Medicine, Chungbuk National University)
Park, Ho-Eun (College of Veterinary Medicine, Chungbuk National University)
Kim, So-Young (Functional Food & Nutrition Division, Department of Agrofood Resource, National Academy of Agricultural Science, Rural Development Administration)
Lee, Wan-Kyu (College of Veterinary Medicine, Chungbuk National University)
Publication Information
Food Science of Animal Resources / v.34, no.5, 2014 , pp. 614-621 More about this Journal
Abstract
This study was conducted to isolate and characterize bacteriocin-producing bacteria against Clostridium perfringens (C. perfringens) from domestic animals to determine their usefulness as probiotics. Bacteriocin-producing bacteria were isolated from pig feces by the spot-on-lawn method. A total of 1,370 bacterial stains were isolated, and six were tentatively selected after identifying the inhibitory activity against the pathogenic indicator C. perfringens KCTC 3269 and KCTC 5100. The selected strains were identified as Enterococcus faecalis (E. faecalis) by 16s rRNA sequencing. Most of the isolated bacterial strains were resistant to 0.5% bile salts for 48 h and remained viable after 2 h at pH 3.0. Some E. faecalis also showed strong inhibitory activity against Listeria monocytogenes KCTC 3569, KCTC 3586 and KCTC 3710. In the present study, we finally selected E. faecalis AP 216 and AP 45 strain based on probiotic selection criteria such as antimicrobial activity against C. perfringens and tolerance to acid and bile salts. The bacteriocins of E. faecalis AP 216 and AP 45 strains were highly thermostable, showing anticlostridial activities even after incubation at $121^{\circ}C$ for 15 min. These bacteriocin-producing bacteria and/or bacteriocins could be used in feed manufacturing as probiotics as an alternative to antibiotics in the livestock industry.
Keywords
antimicrobial activity; bacteriocin; probiotics; Clostridium perfringens;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Teo, A. Y. and Tan, H. M. (2005) Inhibition of Clostridium perfringens by a novel strain of Bacillus subtilis isolated from the gastrointestinal tracts of healthy chickens. Appl. Environ. Microbiol. 71, 4185-4190.   DOI   ScienceOn
2 Graham, D. C. and McKay, L. L. (1985) Plasmid DNA in strains of Pediococcus cerevisiae and Pediococcus pentosaceus. Appl. Environ. Microbiol. 50, 532-534.
3 Hammerman, C., Bin-Nun, A., and Kaplan, M. (2006) Safety of probiotics: comparison of two popular strains. BMJ. 333, 1006-1008.   DOI   ScienceOn
4 Han, S. K., Choi, H. J., Lee, S. M., Shin, M. S., and Lee, W. K. (2011) Screening of Bacteriocin-producing Bacillus strains isolated from domestic animal feces for antagonistic activities against Clostridium perfringens. Korean J. Food Sci. An. 31, 405-412.   과학기술학회마을   DOI   ScienceOn
5 Harlender, S. K. and Spelhaug, S. R. (1989) Inhibition of foodborne bacterial pathogens by bacteriocins from Lactococcus lactis and Pediococcus pentosaceus. J. Food Prot. 52, 856-862.
6 Hechard, Y. and Sahl, H. G. (2002) Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie. 84, 545-557.   DOI   ScienceOn
7 Klaasen, H. L., Molkenboer, M. J., Barkker, J., Miserez, R., Hani, H., Frey, J., Popoff, M. R., and van den Bosch, J. E. (1999) Detection of beta2 toxin gene of Clostridium perfringens in diarrhoeic piglets in the Netherlands and Switzerland. FEMS Immunol. Med. Microbiol. 24, 325-332.
8 Herholz, C., Miserez, R., Nicolet, J., Frey, J., Popoff, M., Gibert, M., Gerber, H., and Straub, R. (1999) Prevalence of beta2- toxigenic Clostridium perfringens in horses with intestinal disorders. J. Clin. Microbiol. 37, 358-361.
9 Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., and Williams, S. T. (1994) Bergey's Manual of Determinative Bacteriology. 9th ed. Williams and Wilkins. Baltimore, USA.
10 Jensen, B. B. (1998) The impact of feed additives on the microbial ecology of the gut in young pigs. J Anim Feed Sci. 7, 45-64.
11 Klaenhammer, T. R. (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12, 39-85.   DOI
12 Lyon, W. J. and Glatz, B. A. (1993) Isolation and purification of propionicin PLG-1, a bacteriocin produced by a strain of Propionibacterium thoenii. Appl. Environ. Microbiol. 59, 83-88.
13 Manteca, C., Daude, G., Jauniaux, T., Linden, A., Pirson, V., Detilleux, J., Ginter, A., Coppe, P., Kaeckenbeeck, A., and Mainil, J. G. (2002) A role for Clostridium perfringens beta2- toxin in bovine enterotoxaemia. Vet. Microbiol. 86, 191-202.   DOI   ScienceOn
14 Mayr-Harting, A., Hedges, A. J., and Berkeley, R. C. W. (1972) Methods for studying bacteriocins. Methods in Microbiology ed. Bergen T and Norris JR. pp. 315-422.
15 Mitsuoka, T. (1980) The world of anaerobic bacteria: A color atlas of anaerobic bacteria. Sobun press. Tokyo, pp. 13-65.
16 Nurmi, E. V., Schneitz, C. E., and Makela, P. H. (1983) Process for the production of a bacterial preparation. Canadian Patent no. 1151066.
17 Bueschel, D. M., Jost, B. H., Billington, S. J., Trinh, H. T., and Songer, J. G. (2003) Prevalence of cpb2, encoding beta2 toxin, in Clostridium perfringens field isolates: correlation of genotype with phenotype. Vet. Microbiol. 94, 121-129.   DOI   ScienceOn
18 Bhunia, A. K., Johnson, M. C., and Ray, B. (1987) Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J. Indust. Microbiol. 2, 319-322.   DOI
19 Aasen, I. M., Moretro, T., Katla, T., Axelsson, L., and Storro, I. (2000) Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42687. Appl. Microbiol. Biotechnol. 53, 159-166.   DOI   ScienceOn
20 Alander, M., Satokari, R., Korpela, R., Saxelin, M., Vilpponen- Salmela, T., Mattila Sandholm, T., and von Wright, A. (1999) Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Appl. Environ. Microbiol. 65, 351-354.
21 Cabo, M. L., Murado, M. A., Gonzalez, M., and Pastoriza, L. (2001) Effects of aeration and pH gradient on nisin production. A mathematical model. Enzyme Microb. Technol. 29, 264-273.   DOI   ScienceOn
22 Chateau, N., Castellanos, I., and Deschamps, A. M. (1993) Distribution of pathogen inhibition in the Lactobacillus isolates of commercial probiotic consortium. J. Appl. Bacteriol. 74, 36-40.   DOI
23 Daba, H., Pandian, S., Gosselin, J. F., Simard, R. E., Huang, J., and Lacroix, C. (1991) Detection and activity of a bacteriocin produced by Leuconostoc mesenteroides. Appl. Environ. Microbiol. 57, 3450-3455.
24 Daeschel, M. A., McKenny, M. C., and McDonald, L. C. (1990) Bactericidal activity of Lactobacillus plantarum C-11. Food Microbiol. 7, 91-98.   DOI
25 Galvez, A., Maqueda, M., Valdivia, E., Quesada, A., and Montoya, E. (1986) Characterization and partial purification of a broad spectrum antibiotic AS-48 produced by Streptococcus faecalis. Can. J. Microbiol. 32, 765-771.   DOI   ScienceOn
26 Garmory, H. S., Chanter, N., French, N. P., Bueschel, D., Songer, J. G., and Titball, R. W. (2000) Occurrence of Clostridium perfringens beta2-toxin amongst animals, determined using genotyping and subtyping PCR assays. Epidemiol. Infect. 124, 61-67.   DOI   ScienceOn
27 De Vuyst, L., Callewaert, R., and Crabbe, K. (1996) Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin under unfavourable growth conditions. Microbiol. 142, 817-827.   DOI
28 Diez-Gonzalez, F. (2007) Applications of bacteriocins in live stock. Curr. Issues Intestinal. Microbiol. 8, 15-24.
29 Fouquie Moreno, M. R., Callewaert, R., Devreese, B., Van Beeumen, J., and De Vuyst, L. (2003) Isolation and biochemical characterisation of enterocins produced by enterococci from different sources. J. Appl. Microbiol. 94, 214-229.   DOI   ScienceOn
30 Gould, G. W. (1996) Industry perspectives on the use of natural antimicrobials and inhibitors for food applications. J. Food Prot. Suppl. 59, 82-86.
31 West, C. A. and Warner, P. J. (1988) Plantacin B, a bacteriocin produced by Lactobacillus plantarum NCDO 1193. FEMS Microbiol. Lett. 49, 163-165.   DOI   ScienceOn
32 Saarela, M., Mogensen, G., Fonden, R., Matto, J., and Mattila- Sandholm, T. (2000) Probiotic bacteria: safety, functional and technological properties. J. Biotechnol. 84, 197-215.   DOI   ScienceOn
33 Ouwehand, A. C. and Vesterlund, S. (1998) Antimicrobial components from lactic acid bacteria. In Lactic acid bacteria: Microbial Ecology and Functional Aspects, 2nd ed. pp. 139-159. [Salminen S and von Wright A, editors]. New York: Marcel Dekker Inc.
34 Parente, E., Ricciardi, A., and Addario, G. (1994) Influence of pH on growth and bacteriocin production by Lactococcus lactis subsp. lactis 140 Nwc during batch fermentation. Appl. Microbiol. Biotechnol. 41, 388-394.
35 Parker, C. A. (1955) Anaerobiosis with iron wool. Aust. J Exp. Biol. Med. Sci. 33, 33-37.   DOI
36 Schoster, A., Kokotovic, B., Permin, A., Pedersen, P. D., Dal Bello, F., and Guardabassi, L. (2013) In vitro inhibition of Clostridium difficile and Clostridium perfringens by commercial probiotic strains. Anaerobe. 20, 36-41.   DOI   ScienceOn
37 Timoney, J. F., Gillespie, J. H., Scott, F. W., and Barlough, J. E. (1998) Hagan and Bruner's microbiology and infectious diseases of domestic animals. 8th ed, Comstock Publishing Associates, Ithaca and London, pp. 214-240.
38 Shearer, A. E., Hoover, D. G., and Kniel, K. E. (2014) Effect of bacterial cell-free supernatants on infectivity of norovirus surrogates. J. Food Prot. 77, 145-149.   DOI   ScienceOn
39 Shin, M. S., Kim, H. M., Kim, K. T., Huh, C. S., Bae, H. S., and Baek, Y. J. (1999) Selection and characteristics of Lactobacillus acidophilus isolated from Korean feces. Kor. J. Food Sci. Technol. 31, 495-501.   과학기술학회마을
40 Sparo, M. D., Confalonieri, A., Urbizu, L., Ceci, M., and Bruni, S. F. (2013) Bio-preservation of ground beef meat by Enterococcus faecalis CECT7121. Braz. J. Microbiol. 44, 43-49.   DOI   ScienceOn
41 Steele, F. M. and Wright, K. H. (2001) Cooling rate effect on outgrowth of Clostridium perfringens in cooked, ready-toeat turkey breast roasts. Poultry Sci. 80, 813-816.   DOI
42 Strompfova, V., Marcinakova, M., Simonova, M., Gancarcikova, S., Jonecova, Z., Scirankova, L., Koscova, J., Buleca, V., Cobanova, K., and Laukova, A. (2006) Enterococcus faecium EK13-an enterocin a-producing strain with probiotic character and its effect in piglets. Anaerobe. 12, 242-248.   DOI   ScienceOn