Browse > Article
http://dx.doi.org/10.5851/kosfa.2014.34.3.325

Porcine Splenic Hydrolysate has Antioxidant Activity in vivo and in vitro  

Han, Kyu-Ho (Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine)
Shimada, Kenichiro (Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine)
Hayakawa, Toru (Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine)
Yoon, Taek Joon (Department of Food and Nutrition, Yuhan University)
Fukushima, Michihiro (Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine)
Publication Information
Food Science of Animal Resources / v.34, no.3, 2014 , pp. 325-332 More about this Journal
Abstract
The antioxidant capacity of porcine splenic hydrolysate (PSH) was studied in vitro and in vivo. Peptide hydrolysates were prepared, using the proteolytic enzyme $Alcalase^{(R)}$. The molecular weights of PSH were 37,666, 10,673, 6,029, and 2,918 g/mol. Rats were fed a 5% (w/v) PSH diet, instead of a casein diet, for 4 wk. The food intake, body weight gain, and liver weight of rats in the PSH group were similar to those in the control (CONT) group. There were no differences in the serum total cholesterol, triglyceride, total protein, or albumin levels between PSH and CONT groups. However, the level of in vivo hepatic lipid peroxidation in PSH group was significantly lower than that in CONT. In vivo hepatic catalase and glutathione peroxidase activities in the PSH group were significantly higher than those in the control group. The in vitro protein digestibility of PSH was lower than that of casein. The in vitro trolox equivalent antioxidant capacity of PSH was significantly higher than that of the peptide hydrolysate from casein. The in vitro radical scavenging activities of PSH were significantly higher than those of the peptide hydrolysate from casein. The present findings suggest that porcine splenic peptides improve the antioxidant status in rats by enhancing hepatic catalase and GSH-Px activities, and indicate a potential mechanism of radical scavenging activity during gastrointestinal passage.
Keywords
porcine splenic hydrolysate; antioxidant; radical scavenging capacity; protein digestibility;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Brand-Williams, W., Cuvelier, M. E., and Berset, C. (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28, 25-30.   DOI   ScienceOn
2 Cohn, V. H. and Lyle, J. A. (1966) Fluorometric assay for glutathione. Anal. Biochem. 14, 434-440.   DOI   ScienceOn
3 Davalos, A., Miguel, M., Bartolome, B., and Lopez-Fandino, R. (2004) Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. J. Food Prot. 67, 1939-1944.   DOI
4 Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105, 121-126.   DOI   ScienceOn
5 AOAC (1990) Official Mmethods of analysis. 15th ed, Association of Official Analytical Chemists, Washington, DC.
6 Worthington, D. J. and Rosemeyer, M. A. (1976) Glutathione reductase from human erythrocytes, Catalytic properties and aggregation. Eur. J. Biochem. 67, 231-238.   DOI   ScienceOn
7 Rival, S. G., Boeriu, C. G., and Wichers, H. J. (2001) Casein and casein hydrolysates. 1. Lipoxygenase inhibitory properties. J. Agric. Food Chem. 49, 287-294.   DOI   ScienceOn
8 Lopez-Alarcon, C. and Lissi, E. (2005) Interaction of pyrogallol red with peroxyl radicals. A basis for a simple methodology for the evaluation of antioxidant capabilities. Free Radic. Res. 39, 729-736.   DOI   ScienceOn
9 Nazeer, R. A., Sampath Kumar, N. S., and Jai Ganesh, R. (2012) In vitro and in vivo studies on the antioxidant activity of fish peptide isolated from the croaker (Otolithes ruber) muscle protein hydrolysate. Peptides 35, 261-268.   DOI   ScienceOn
10 Ohkawa, H., Ohishi, N., and Yagi, K. (1979) Assay for lipid peroxide in animal tissues by thiobarbutric reactions. Anal. Biochem. 95, 351-358.   DOI   ScienceOn
11 Saiga, A., Soichi, T., and Nishimura, Y. (2003) Antioxidant activity of peptides from porcine myofibrillar proteins by protease treatment. J. Agric. Food Chem. 51, 3661-3667.   DOI   ScienceOn
12 Sies, H., Stahl, W., and Sevanian, A. (2005) Nutritional, dietary and postprandial oxidative stress. J. Nutr. 135, 969-972.   DOI
13 Gardner, M. L. G. (1988) Gastrointestinal absorption of intact proteins. Annu. Rev. Nutr. 8, 329-350.   DOI   ScienceOn
14 Udenigwe, C. C. and Howard, A. (2012) Meat proteome as source of functional biopeptides. Food Res. Int. 54, 1021-1032.
15 Wang, H. L. and Kurtz, A. (2000) Breast cancer growth inhibition by delivery of the MDGI-derived peptide P108. Oncogene 19, 2455-2460.   DOI
16 Habig, W. H., Pabst, M. J., and Jakoby. W. B. (1974) Glutathione-S-transferases. J. Biol. Chem. 249, 7130-7139.
17 Gill, I., Lopez-Fandino, R., Jorba, X., and Vulfson, E. (1996) Biologically active peptides and enzymatic approaches to their production. Enzyme Microb. Technol. 18, 162-183.   DOI   ScienceOn
18 Halliwell, B., Zhao, K., and Whiteman, M. (2000) The gastrointestinal tract: a major site of antioxidant action? Free Radic. Res. 33, 819-830.   DOI   ScienceOn
19 Hernandez-Ledesma, B., Davalos, A., Bartolome, B., and Amigo, L. (2005) Preparation of antioxidant enzymatic hydrolysates from alpha-lactalbumin and beta-lactoglobulin, Identification of active peptides by HPLC-MS/MS. J. Agric. Food Chem. 53, 588-593.   DOI   ScienceOn
20 Horiguchi, N., Horiguchi, H., and Suzuki, Y. (2005) Effect of wheat gluten hydrolysate on the immune system in healthy human subjects. Biosci. Biotechnol. Biochem. 69, 2445-2449.   DOI   ScienceOn
21 Korhonen, H. and Pihlanto, A. (2003) Food-derived bioactive peptides-opportunities for designing future foods. Curr. Pharm. Des. 9, 1297-1308.   DOI   ScienceOn
22 Latham, P. W. (1999) Therapeutic peptides revisited. Nat. Biotechnol. 17, 755-757.   DOI   ScienceOn
23 Dong, S., Wei, B., Chen, B., McClements, D. J., and Decker, E. A. (2011) Chemical and antioxidant properties of casein peptide and its glucose Maillard reaction products in fish oilin- water emulsions. J. Agric. Food Chem. 59, 13311-13317.   DOI   ScienceOn
24 Lawrence, R. and Burk, R. (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Biophys. Res. Commun. 7, 952-958.
25 Elias, R., Kellerby, S. S., and Decker, E. A. (2008) Antioxidant activity of proteins and peptides. Crit. Rev. Food Sci. Nutr. 48, 430-441.   DOI   ScienceOn
26 Di Bernardini, R., Mullen, A. M., Bolton, D., Kerry, J., O'Neill, E., and Hayes, M. (2012) Assessment of the angiotensin- I-converting enzyme (ACE-I) inhibitory and antioxidant activities of hydrolysates of bovine brisket sarcoplasmic proteins produced by papain and characterisation of associated bioactive peptidic fractions. Meat Sci. 90, 226-235.   DOI   ScienceOn
27 Fitzgerald, R. J. and Murray, B. A. (2006) Bioactive peptides and lactic fermentation. Int. J. Dairy Technol. 59, 118-125.   DOI   ScienceOn
28 Cadenas, E. and Davies, K. J. (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 29, 222-230.   DOI   ScienceOn
29 Bae, J. H., Bassenge, E., Kim, K. B., Kim, Y. K., Kim, K. S., Lee, H. J., Moon, K. C., Lee, M. S., Park, K. Y., and Schwemmer, M. (2001) Postprandial hypertriglyceridemia impairs endothelial function by enhanced oxidant stress. Atherosclerosis 155, 517-523.   DOI   ScienceOn
30 Borghardt, J., Rosien, B., Gortelmeyer, R., Lindemann, S., Hartleb, M., and Klingmuller, M. (2000) Effects of a spleen peptide preparation as supportive therapy in inoperable head and neck cancer patients. Arzneimittelforschung 50, 178-184.
31 Dinis, T. C. P., Madeira, V. M. C., and Almeida, L. M. (1994) Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315, 161-169.   DOI   ScienceOn
32 Stahl, W., van den Berg, H., Arthur, J., Bast, A., Dainty, J., Faulks, R. M., Gartner, C., Haenen, G., Hollman, P., Holst, B., Kelly, F. J., Polidori, M. C., Rice-Evans, C., Southon, S., van Vliet, T., Vina-Ribes, J., Williamson, G., and Astley, S. B. (2002) Bioavailability and metabolism. Mol. Asp. Med. 23, 39-100.   DOI   ScienceOn
33 Fujiwara, M., Ishida, Y., Nimura, N., Toyama, A., and Kinoshita, T. (1987) Postcolumn fluorometric detection system for liquid chromatographic analysis of amino and imino acids using o-phthalaldehyde/N-acetyl-L-cysteine reagent. Anal. Biochem. 166, 72-78.   DOI   ScienceOn