Identifying long non-coding RNAs and characterizing their functional roles in swine mammary gland from colostrogenesis to lactogenesis |
Shi, Lijun
(Institute of Animal Science, Chinese Academy of Agricultural Sciences)
Zhang, Longchao (Institute of Animal Science, Chinese Academy of Agricultural Sciences) Wang, Ligang (Institute of Animal Science, Chinese Academy of Agricultural Sciences) Liu, Xin (Institute of Animal Science, Chinese Academy of Agricultural Sciences) Gao, Hongmei (Institute of Animal Science, Chinese Academy of Agricultural Sciences) Hou, Xinhua (Institute of Animal Science, Chinese Academy of Agricultural Sciences) Zhao, Fuping (Institute of Animal Science, Chinese Academy of Agricultural Sciences) Yan, Hua (Institute of Animal Science, Chinese Academy of Agricultural Sciences) Cai, Wentao (Institute of Animal Science, Chinese Academy of Agricultural Sciences) Wang, Lixian (Institute of Animal Science, Chinese Academy of Agricultural Sciences) |
1 | Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 2012;22:1775-89. https://doi.org/10.1101/gr.132159.111 DOI |
2 | Kessler EC, Wall SK, Hernandez LL, Gross JJ, Bruckmaier RM. Short communication: Mammary gland tight junction permeability after parturition is greater in dairy cows with elevated circulating serotonin concentrations. J Dairy Sci 2019;102:1768-74. https://doi.org/10.3168/jds.2018-15543 DOI |
3 | Xie C, Mao X, Huang J, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 2011;39(Suppl_2):W316-22. https://doi.org/10.1093/nar/gkr483 DOI |
4 | Le K, Guo H, Zhang Q, et al. Gene and lncRNA co-expression network analysis reveals novel ceRNA network for triplenegative breast cancer. Sci Rep 2019;9:15122. https://doi.org/10.1038/s41598-019-51626-7 DOI |
5 | Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008;9:559. https://doi.org/10.1186/1471-2105-9-559 DOI |
6 | Wang L, Cho KB, Li Y, Tao G, Xie Z, Guo B. Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int J Mol Sci 2019;20:5758. https://doi.org/10.3390/ijms20225758 DOI |
7 | Li X, Wang H, Yao B, Xu W, Chen J, Zhou X. lncRNA H19/miR-675 axis regulates cardiomyocyte apoptosis by targeting VDAC1 in diabetic cardiomyopathy. Sci Rep 2016;6:36340. https://doi.org/10.1038/srep36340 DOI |
8 | Nguyen DA, Neville MC. Tight junction regulation in the mammary gland. J Mammary Gland Biol Neoplasia 1998;3:233-46. https://doi.org/10.1023/a:1018707309361 DOI |
9 | Arrowsmith S, Wray S. Oxytocin: its mechanism of action and receptor signalling in the myometrium. J Neuroendocrinol 2014;26:356-69. https://doi.org/10.1111/jne.12154 DOI |
10 | Gimpl G, Fahrenholz F. The oxytocin receptor system: structure, function, and regulation. Physiol Rev 2001;81:629-83. https://doi.org/10.1152/physrev.2001.81.2.629 DOI |
11 | Huang W, Zhang X, Li A, Xie L, Miao X. Genome-wide analysis of mRNAs and lncRNAs of intramuscular fat related to lipid metabolism in two pig breeds. Cell Physiol Biochem 2018;50:2406-22. https://doi.org/10.1159/000495101 DOI |
12 | Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 2015;33:290-5. https://doi.org/10.1038/nbt.3122 DOI |
13 | Kim S. Mammary gland growth and nutrient mobilization in lactating sows: a dynamic model to describe nutrient flow. Champaign, IL, USA: University of Illinois; 1999. |
14 | Quesnel H, Farmer C, Devillers N. Colostrum intake: Influence on piglet performance and factors of variation. Livest Sci 2012;146:105-14. https://doi.org/10.1016/j.livsci.2012.03.010 DOI |
15 | Vadmand CN, Krogh U, Hansen CF, Theil PK. Impact of sow and litter characteristics on colostrum yield, time for onset of lactation, and milk yield of sows. J Anim Sci 2015;93:2488-500. https://doi.org/10.2527/jas.2014-8659 DOI |
16 | Hurley WL. Review: Mammary gland development in swine: embryo to early lactation. Animal 2019;13:S11-9. https://doi.org/10.1017/S1751731119000521 DOI |
17 | Balzani A, Cordell HJ, Sutcliffe E, Edwards SA. Heritability of udder morphology and colostrum quality traits in swine. J Anim Sci 2016;94:3636-44. https://doi.org/10.2527/jas.2016-0458 DOI |
18 | Palombo V, Loor JJ, D'Andrea M, et al. Transcriptional profiling of swine mammary gland during the transition from colostrogenesis to lactogenesis using RNA sequencing. BMC Genomics 2018;19:322. https://doi.org/10.1186/s12864-018-4719-5 DOI |
19 | Hennighausen L, Robinson GW. Signaling pathways in mammary gland development. Dev Cell 2001;1:467-75. https://doi.org/10.1016/s1534-5807(01)00064-8 DOI |
20 | Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114-20. https://doi.org/10.1093/bioinformatics/btu170 DOI |
21 | Wan YH, Saghatelian A, Chong LW, Zhang CL, Cravatt BF, Evans RM. Maternal PPAR gamma protects nursing neonates by suppressing the production of inflammatory milk. Gene Dev 2007;21:1895-908. https://doi.org/10.1101/gad.1567207 DOI |
22 | Quesnel H, Farmer C. Review: nutritional and endocrine control of colostrogenesis in swine. Animal 2019;13:S26-34. https://doi.org/10.1017/S1751731118003555 DOI |
23 | Guil S, Esteller M. Cis-acting noncoding RNAs: friends and foes. Nat Struct Mol Biol 2012;19:1068-75. https://doi.org/10.1038/nsmb.2428 DOI |
24 | Kensinger RS, Collier RJ, Bazer FW, Ducsay CA, Becker HN. Nucleic acid, metabolic and histological changes in gilt mammary tissue during pregnancy and lactogenesis. J Anim Sci 1982;54:1297-308. https://doi.org/10.2527/jas1982.5461297x DOI |
25 | Jin Y, Zhang K, Huang W, et al. Identification of functional lncRNAs in pseudorabies virus type II infected cells. Vet Microbiol 2020;242:108564. https://doi.org/10.1016/j.vetmic.2019.108564 DOI |
26 | Wang J, Ren QL, Hua LS, et al. Comprehensive analysis of differentially expressed mRNA, lncRNA and circRNA and their ceRNA networks in the longissimus dorsi muscle of two different pig breeds. Int J Mol Sci 2019;20:1107. https://doi.org/10.3390/ijms20051107 DOI |
27 | Liang G, Yang Y, Li H, et al. LncRNAnet: a comprehensive Sus scrofa lncRNA database. Anim Genet 2018;49:632-5. https://doi.org/10.1111/age.12720 DOI |
28 | St Laurent G, Wahlestedt C, Kapranov P. The Landscape of long noncoding RNA classification. Trends Genet 2015;31:239-51. https://doi.org/10.1016/j.tig.2015.03.007 DOI |
29 | Miao Z, Wang S, Zhang J, et al. Identification and comparison of long non-conding RNA in Jinhua and Landrace pigs. Biochem Biophys Res Commun 2018;506:765-71. https://doi.org/10.1016/j.bbrc.2018.06.028 DOI |
30 | Li S, Chen C, Chai M, et al. Identification and analysis of lncRNAs by whole-transcriptome sequencing in porcine preadipocytes induced by BMP2. Cytogenet Genome Res 2019;158:133-44. https://doi.org/10.1159/000501182 DOI |
31 | Wang Y, Hu T, Wu L, Liu X, Xue S, Lei M. Identification of non-coding and coding RNAs in porcine endometrium. Genomics 2017;109:43-50. https://doi.org/10.1016/j.ygeno.2016.11.007 DOI |
32 | Guttman M, Garber M, Levin JZ, et al. Correction: Corrigendum: Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs (2010;28:503-10). Nat Biotechnol 2010;28:756. https://doi.org/10.1038/nbt0710-756b DOI |
33 | Boyd RD, Kensinger RS. Metabolic precursors for milk synthesis. Wageningen, The Netherlands: Wageningen Press; 1998. |
34 | Cai WT, Li C, Li JY, Song JZ, Zhang SL. Integrated small RNA sequencing, transcriptome and GWAS data reveal microRNA regulation in response to milk protein traits in Chinese Holstein cattle. Front Genet 2021;12:726706. DOI |
35 | Ahmad A, Dey L. A k-mean clustering algorithm for mixed numeric and categorical data. Data Knowl Eng 2007;63:503-27. https://doi.org/10.1016/j.datak.2007.03.016 DOI |