1 |
S. Silva, R. Silva, R. Pinto, and R. Salles, "Botnets: A survey," Computer Networks, Vol. 57, No. 2, pp. 378-403, 2013, doi:10.1016/j.comnet.2012.07.021
DOI
|
2 |
W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F.E. Alsaadi, " A Survey of Deep Neural Network Architectures and Their Applications," Neurocomputing, Vol. 234, pp. 11-26, April 2017, doi:10.1016/j.neucom.2016.12.038
DOI
|
3 |
C. Hung and H. Sun, "A Botnet Detection System Based on Machine-Learning using Flow-Based Features," SECURWARE 2018: The Twelfth International Conference on Emerging Security Information, Systems and Technologies, 2018.
|
4 |
S. Garcia, M. Grill, J.Stiborek, and A. Zunino, "An empirical comparison of botnet detection methods," Computers and Security Jourmal, Vol. 45, pp. 100-123, 22014, doi:10.1016/j.cose.2014.05.011
DOI
|
5 |
The CTU-13 Dataset. A Labeled Dataset with Btnet, Normal and Background traffic, https://www.stratosphereips.org/datasets-ctu13
|
6 |
S. Maeda, A. Kanai, S. Tanimoto, T. Hatashima, and K. Ohkubo, "A Botnet Detection Method on SDN using Deep Learning," Proceedings of 2019 IEEE International Conference on Consumer Electronics, pp. 1-6, 2019, doi:10.1109/icce.2019.8662080
|
7 |
M. Tavallaee, E. Bagheri, W. Lu, and A.A. Ghorbani, "A Detailed Analysis of the KDD CUP 99 Data Set," Proceddings of the 2009 IEEE Symposium on Computational Intelligence, pp. 1-6, July 2009, doi:10.1109/cisda.2009.5356528
|
8 |
B. O'Gorman, C. Wueest, D. O'Brien, G. Cleary, H.. Lau, J.P. Power, M. Corpin, O. Cox, P. Wood, and S. Wallace, Symantec Internet Security Threat Report, Technical Report, Vol. 24, 2019.
|
9 |
L.F. Maimo, A.P. Gomez, F.G. Clemente, M.G. Perez, and G.M. Perez, "A Self-Adaptive Deep Learning-Based System for Anomaly Detection in 5G Networks," IEEE Access, Vol. 6, pp. 7700-7712, 2018, doi:10.1109/access.2018.2803446
DOI
|
10 |
L. Mohammadpour, T.C. Ling, C.S. Liew,and C.Y. Chong, "A Convolutional Neural Network for Network Intrusion Detection System," Proceedings of the APAN- Research Workshop, 2018.
|
11 |
C. Livadas, R. Walsh, D. Lapsley, and W.T. Strayer, "Using Machine Learning Techniques to Identify Botnet Traffic," Proceedings of the 31st IEEE Conference on Local Computer Networks, 2006, doi:10.1109/lcn.2006.322210
|
12 |
W.R. Stevens, TCP/IP Illustrated, Volume 1, Addison-Wesley, 1994.
|
13 |
B. Nugraha, A. Nambiar, and T. Bauschert, "Performance Evaluation of Botnet Detection using Deep Learning Techniques," Proceedings of the 11th International Conference on Network of the Future, Oct. 2020, doi:10.1109/nof50125.2020.9249198
|
14 |
S.C. Chen, Y.R. Chen, and W.G. Tzeng, "Effective botnet detection through neural networks on convolutional features," Proceedings of the 17th IEEE Conference On Trust, Security, And Privacy In Computing And Communications/12th IEEE International Conference On Big Data Science And Engineering, pp. 372-378, 2018, doi:10.1109/trustcom/bigdatase.2018.00062
|
15 |
B. Rahbarinia, R. Perdisci, A. Lanzi, and K. Ki, "Peerrush: Mining for Unwanted p2p traffic," Journal of Information Security and Applications, Vol. 19, No. 3, pp. 194-208, 2014, doi:10.1007/978-3-642-39235-1_4
DOI
|
16 |
A. Geron, Hands-On Machine Learning with Scikit-Learn & TensorFlow, O'REILLY, 2017.
|