1 |
H. T. Mai, K. Park, H. Lee, C. Kim, M. Lee and S. Hur, Dynamic Data Migration in Hybrid Main Memories for In-Memory Big Data Storage, ETRI Journal, vol. 36, no. 6, December, 2014.
|
2 |
Colfax, Clustering Modes in Knights Landing Processors, 2016.
|
3 |
V. M. Weaver, Linux perf event Features and Overhead, in FastPath Workshop, Austin, TX, USA, 2013.
|
4 |
J. Treibig, G. Hager, and G. Wellein, LIKWID: A Lightweight Performance-Oriented Tool Suite for x86 Multicore Environments, in ICPPW. ACM, San Diego, CA, USA, pp. 207-216, 2010.
|
5 |
L. E. Ramos, E. Gorbatory, and R. Bianchini, Page placement in hybrid memory systems, in ICS. ACM, Tuscon, Arizona, USA, pp. 85-95, 2011.
|
6 |
D. Shin, S. Park, S. Kim, and K. Park, Adaptive page grouping for energy efficiency in hybrid PRAM-DRAM main memory, in ACM Research in Applied Computation Symposium, San Antonio, Texas, USA, pp. 395-402, 2012.
|
7 |
D. Bailey, J. Bartion, T. Lasinski and H. Simon, The NAS Parallel Benchmarks, Technical Report RNR-91-002, NASA Ames Research Center, August 1991.
|
8 |
R. Espasa, Larrabee - A Many-Core Intel Architecture for Visual Computing, in ACM CF, Ischia, Italy, pp. 225-225, 2009.
|
9 |
J. Jeffers, J. Reinders, and A. Sodani, Knights Landing architecture. Morgan Kaufmann, Jan. 2016.
|
10 |
A. Sodani, Knights landing (KNL): 2nd Generation Intel Xeon Phi processor, in IEEE Hot Chips 27 Symposium, Cupertino, CA, USA, pp. 1-24, 2015.
|
11 |
A. K. Singh, M. Shafique, A. Kumarm, and J. Henkel, Mapping on multi/many-core systems - survey of current and emerging trends, in DAC, Austin, TX, USA, 2013.
|
12 |
I. B. Peng, R. Gioiosa, G. Kestor, P. Cicotti, E. Laure, and S. Markidis, Exploring the Performance Benefit of Hybrid Memory System on HPC Environments, in IPDPSW. IEEE, Lake Buena Vista, FL, USA, pp. 683-692, 2017.
|
13 |
I. B. Peng, R. Gioiosa, G. Kestor, J. S. Vetter, P. Cicotti, E. Laure, and S. Markidis, Characterizing the performance benefit of hybrid memory system for HPC applications, Parallel Computing, vol. 76, pp. 57-69, May, 2018.
DOI
|
14 |
O. Mutlu, Memory scaling: A systems architecture perspective, in IMW. IEEE, Monterey, CA, USA, pp. 21-25, 2013.
|
15 |
Y. Ro, M. Sung, Y. Park, and J. H. Ahn, Selective DRAM cache bypassing for improving bandwidth on DRAM/NVM hybrid main memory systems, IEICE Electronics Express, vol. 14, no. 11, pp. 20 170 437-20 170 437, May, 2017.
DOI
|
16 |
J. Meena, S. Sze, U. Chand, and T.-Y. Tseng, Overview of emerging nonvolatile memory technologies, Nanoscale Research Letters, vol. 9, no. 1, p. 526, September, 2014.
DOI
|
17 |
R. F. Freitas and W. W. Wilcke, Storage-class memory: The next storage system technology, IBM Journal of Research and Development, vol. 52, no. 4.5, pp. 439-447, July, 2008.
DOI
|
18 |
M. K. Qureshi, V. Srinivasan, and J. A. Rivers, Scalable high performance main memory system using phase-change memory technology, ACM SIGARCH Computer Architecture News, vol. 37, no. 3, p. 24, June, 2009.
DOI
|
19 |
G. Dhiman, R. Z. Ayoub, and T. Rosing, PDRAM - a hybrid PRAM and DRAM main memory system. in DAC, San Francisco, CA, USA, pp. 664, 2009.
|
20 |
Y. Tan, B. Wang, Z. Yan, Q. Deng, X. Chen and D. Liu, UIMigrate: Adaptive Data Migration for Hybrid Non-Volatile Memory Systems, IEEE Design, Automation & Test in Europe Conference & Exhibition, Florence, Italy, 2019.
|
21 |
M. Lee, D. Kang and Y. Eom, M-CLOCK: Migration-optimized Page Replacement Algorithm for Hybrid Memory Architecture, ACM Transactions on Storage, vol. 14, no. 3, pp. 1-17, November, 2018.
|
22 |
T. D. Doudali, S. Blagodurov, A. Vishnu, S. Gurumurthi, A. Gavrilovska, Kleio: A Hybrid Memory Page Scheduler with Machine Intelligence, ACM International Symposium on High-Performance Parallel and Distributed Computing, Phoenix, AZ, USA, pp. 37-48, 2019.
|