1 |
J. Cohen, A coefficient of agreement for nominal scales, Educational and Psychological Measurement, Vol. 20, pp. 37-46, 1960.
DOI
|
2 |
G. W. Willam, Comparing the joint agreement of several raters with another rater, Biometrics, Vol. 32, pp. 619-627, 1976.
DOI
|
3 |
R. J. Light, Measures of response agreement for aualitative data: some generalizations and alternatives, Psychological Bulletin,Vol. 76, pp. 365-377, 1971.
DOI
|
4 |
L. Hubert, Kappa revisited, Psychological Bulletin, Vol. 36, pp. 207-216, 1983.
|
5 |
A. J. Cogner, Integration and generalization of kappas for multiple raters, Psychological Bulletin, Vol. 88, pp. 322-328, 1980.
DOI
|
6 |
K. J. Berry, and P. W. Mielke Jr. A generalization of Cohen's kappa agreement measure to interval measurement and multiple raters. Educational and Psychological Measurement, Vol. 48, pp. 921-933, 1988.
DOI
|
7 |
H. Janson, and U. Olsson, A measure of agreement for interva or nominal multivariate observations, Educational and Psychological Measurement, Vol. 61, No. 2,pp. 277-289. 2001.
DOI
|
8 |
Y. H. Um, A new agreement measure for interval multivariate observations, Journal of Korean Data & Information Science Society, Vol. 15, pp. 263-271, 2004.
|
9 |
E. J. G. Pitman, Significance tests which may be applied to sample from any populations, III. The analysis of variance test. Biometrika, Vol. 29, pp. 322-335, 1938.
|
10 |
A. F. Hayes, Permustat: randomization tests for the Machintosh, Behavior Research Methods, Instruments, & Computers, Vol 28, pp. 473-475, 1996.
DOI
|
11 |
R. S. Chen and W. P. Dunlap, SAS procedures for approximate randomizatio tests, Behavior Research Methods, Instruments, & Computers, Vol. 25, pp. 406-409, 1993.
DOI
|
12 |
P. S. Maxim, Quantative research Methods in the Social Sciences. New York: Oxford University Press, 1999.
|
13 |
J. E. Johnston, K. J. Berry, and P. W. Mielke, Permutation tests: precision in estimating probability values., Perceptual and Motor Skills, Vol. 105, pp. 915-920, 2007.
DOI
|
14 |
P. W. Mielke Jr. and K. J. Berry, Permutation methods: a distance function approach. (2nd ed.) New York: Springer-Verlag, 2007.
|