Browse > Article
http://dx.doi.org/10.9708/jksci.2014.19.12.171

Maximum Sugar Loss Lot First Production Algorithm for Cane Sugar Production Problem  

Lee, Sang-Un (Dept. of Multimedia Eng., Gangneung-Wonju National University)
Abstract
Gu$\acute{e}$ret et al. tries to obtain the solution using linear programming with $O(m^4)$ time complexity for cane sugar production problem a kind of bin packing problem that is classified as NP-complete problem. On the other hand, this paper suggests the maximum loss of lot first production greedy rule algorithm with O(mlogm) polynomial time complexity underlying assumption of the polynomial time rule to find the solution is exist. The proposed algorithm sorts the lots of sugar loss slope into descending order. Then, we select the lots for each slot production capacity only, and swap the exhausted life span of lots for lastly selected lots. As a result of experiments, this algorithm reduces the $O(m^4)$ of linear programming to O(mlogm) time complexity. Also, this algorithm better result than linear programming.
Keywords
Capability; Slot; Lot; Loss; Slope;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Gueret, X. Prins, and M. Sevaux, "Applications of Optimization with Xpress-MP: 6.4 Cane Sugar Production," Dash Optimization Ltd., pp. 73-75, Feb. 2005.
2 E. Falkenauer, "A Hybrid Grouping Genetic Algorithm for Bin Packing," Journal of Heuristics, Vol. 2, No. 1, pp 5-30, Aug 1996.   DOI
3 A. Lodi, S. Martello, and D. Vigo, "Recent Advances on Two-Dimensional Bin Packing Problems," Discrete Applied Mathematics, Vol. 123, No. 1-3, pp. 379-396, Nov. 2002.   DOI   ScienceOn
4 M. Edvall, "Tank Loading," Tomlab Optimization Inc, http://tomsym.com/examples/tomsym_tankloa- ding.html, Apr. 2009.
5 G. D. Thompson and P. K. Moberly, "Programme Planning: A Step Towards Improved Sugarcane Production," Proceedings of The South Africa Sugar Technologists' Association, pp. 40-49, Jun. 1976.
6 H. Heluane, M. Colombo, M. R. Hernandez, M. Graells, and L. Puigjaner, "Enhancing Sugar Cane Process Performance Through Optimal Production Scheduling," Chemical Engineering and Processing: Process Intensification, Vol. 46, No. 3, pp. 198-209, Mar. 2007.   DOI
7 J. Kallrath, and A. Schreieck, "Discrete Optimisation and Real World Problems," Europe '95 Proceedings of the International Conference and Exhibition on High-Performance Computing and Networking, Lecture Notes in Computer Science, Vol. 919, pp. 351-359, May 1995.
8 J. J. Hopfield, and D. W. Tank, "Neural Computation of Decisions in Optimization Problems," Biological Cybernetics, Vol. 52, No. 3, pp. 141-152, Jul. 1985.
9 J. Kallrath, "Mixed Integer Optimization in the Chemical Process Industry: Experience, Potential and Future Perspectives," Chemical Engineering Research and Design, Vol. 78, No. 6, pp. 809-822, Sep. 2000.   DOI   ScienceOn
10 P. Wright, "Consumer Choice Strategies: Simplifying vs. Optimizing," Journal of Marketing Research, Vol. 12, No. 1, pp. 60-67, Feb. 1975.   DOI   ScienceOn
11 S. U. Lee, "A Polynomial Time Optimal Algorithm for Linear Bin Packing Problem," Journal of the Korea Society of Computer and Information, Vol. 11, No. 8, pp. 9-16, Aug. 2013.
12 G. Bendall and F. Margot, "Greedy Type Resistance of Combinatorial Problems," Discrete Optimization, Vol. 3, No. 4, pp. 288-298, Dec. 2006.   DOI   ScienceOn