Browse > Article
http://dx.doi.org/10.5303/PKAS.2015.30.2.139

CONSTRAINING SUPERNOVA PROGENITORS: AN INTEGRAL FIELD SPECTROSCOPIC SURVEY OF THE EXPLOSION SITES  

KUNCARAYAKTI, H. (Millennium Institute of Astrophysics)
ALDERING, G. (Physics Division, Lawrence Berkeley National Laboratory)
ANDERSON, J.P. (European Southern Observatory, Alonso de Cordova)
ARIMOTO, N. (Subaru Telescope, National Astronomical Observatory of Japan)
DOI, M. (Institute of Astronomy, Graduate School of Science, The University of Tokyo)
GALBANY, L. (Millennium Institute of Astrophysics)
HAMUY, M. (Departamento de Astronomia, Universidad de Chile)
HASHIBA, Y. (Institute of Astronomy, Graduate School of Science, The University of Tokyo)
KRUEHLER, T. (European Southern Observatory, Alonso de Cordova)
MAEDA, K. (Department of Astronomy, Kyoto University)
MOROKUMA, T. (Institute of Astronomy, Graduate School of Science, The University of Tokyo)
USUDA, T. (National Astronomical Observatory of Japan)
Publication Information
Publications of The Korean Astronomical Society / v.30, no.2, 2015 , pp. 139-143 More about this Journal
Abstract
We describe a survey of nearby core-collapse supernova (SN) explosion sites using integral field spectroscopy (IFS) techniques, which is an extension of the work described in Kuncarayakti et al. (2013). The project aims to constrain SN progenitor properties based on the study of the immediate environment of the SN. The stellar populations present at the SN explosion sites are studied by means of integral field spectroscopy, which enables the acquisition of both spatial and spectral information of the object simultaneously. The spectrum of the SN parent stellar population gives an estimate of its age and metallicity. With this information, the initial mass and metallicity of the once coeval SN progenitor star are derived. While the survey is mostly done in optical, the additional utilization of near-infrared integral field spectroscopy assisted with adaptive optics (AO) enables us to examine the explosion sites in high spatial detail, down to a few parsecs. This work is being carried out using multiple 2-8 m class telescopes equipped with integral field spectrographs in Chile and Hawaii.
Keywords
supernovae; massive stars; stellar populations; integral field spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aldering, G., Adam, G., & Antilogus, P., et al., 2002, Overview of the Nearby Supernova Factory, Proc. SPIE, 4836, 61
2 Allington-Smith, J., Murray, G., & Content, R., et al., 2002, Integral Field Spectroscopy with the Gemini Multiobject Spectrograph. I. Design, Construction, and Testing, PASP, 114, 892   DOI   ScienceOn
3 Anderson, J. P., Habergham, S. M., James, P. A., & Hamuy, M., 2012, Progenitor Mass Constraints for Core-collapse Supernovae from Correlations with Host Galaxy Star Formation, MNRAS, 424, 1372   DOI   ScienceOn
4 Bacon, R., Accardo, M., A & djali, L., et al., 2010, The MUSE Second-generation VLT Instrument, Proc. SPIE, 7735, 08
5 Barbon, R., Buond, V., Cappellaro, E., & Turatto, M., 1999, The Asiago Supernova Catalogue - 10 Years After, A&AS, 139, 531   DOI
6 Bigelow, B. C., Dressler, A. M., Shectman, S. A., & Epps, H. W., 1998, IMACS: the Multiobject Spectrograph and Imager for the Magellan I Telescope, Proc. SPIE, 3355, 225
7 Bonnet, H., Abuter, R., & Baker, A., et al., 2004, First Light of SINFONI at the VLT, The Messenger, 117, 17
8 Cao, Y., Kasliwal, M. M., & Arcavi, I., et al., 2013, Discovery, Progenitor and Early Evolution of a Stripped Envelope Supernova iPTF13bvn, ApJL, 775, L7   DOI
9 Crowther, P. A., 2013, On the Association Between Corecollapse Supernovae and HII Regions, MNRAS, 428, 1927   DOI
10 Eisenhauer, F., Abuter, R., & Bickert, K., et al., 2003, SINFONI - Integral Field Spectroscopy at 50 Milli-arcsecond Resolution with the ESO VLT, Proc. SPIE, 4841, 1548
11 Eldridge, J. J., Fraser, M., Smartt, S. J., Maund, J. R., & Crockett, R. M., 2013, The Death of Massive Stars - II. Observational Constraints on the Progenitors of Type Ibc Supernovae, MNRAS, 436, 774   DOI
12 Galbany, L., Stanishev, V., & Mourao, A. M., et al. 2014, Nearby Supernova Host Galaxies from the CALIFA Survey:I. Sample, Data Analysis, and Correlation to Starforming Regions, arXiv:1409.1623 (A&A accepted)
13 Groh, J. H., Meynet, G., Georgy, C., & Ekstrom, S., 2013, Fundamental Properties of Core-collapse Supernova and GRB Progenitors: Predicting the Look of Massive Stars Before Death, A&A, 558, A131   DOI
14 Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann, D. H., 2003, How Massive Single Stars End Their Life, ApJ, 591, 288   DOI
15 Hook, I. M., Jorgensen, I., & Allington-Smith, J. R., et al., 2004, The Gemini-North Multi-Object Spectrograph: Performance in Imaging, Long-Slit, and Multi-Object Spectroscopic Modes, PASP, 116, 425   DOI   ScienceOn
16 Kuncarayakti, H., Doi, M., & Aldering, G., et al., 2013a, Integral Field Spectroscopy of Supernova Explosion Sites: Constraining the Mass and Metallicity of the Progenitors. I. Type Ib and Ic Supernovae, AJ, 146, 30   DOI   ScienceOn
17 Kuncarayakti, H., Doi, M., & Aldering, G., et al., 2013b, Integral Field Spectroscopy of Supernova Explosion Sites: Constraining the Mass and Metallicity of the Progenitors. II. Type II-P and II-L Supernovae, AJ, 146, 31   DOI   ScienceOn
18 Lantz, B., Aldering, G., & Antilogus, P., et al., 2004, SNIFS: a Wideband Integral Field Spectrograph with Microlens Arrays, Proc. SPIE, 5249, 146
19 Le Fevre, O., Saisse, M., & Mancini, D., et al., 2003, Commissioning and Performances of the VLT-VIMOS Instrument, Proc. SPIE, 4841, 1670
20 Leitherer, C., Schaerer, D., & Goldader, J. D., et al., 1999, Starburst99: Synthesis Models for Galaxies with Active Star Formation, ApJS, 123, 3   DOI
21 Pettini, M., & Pagel, B. E. J., 2004, [OIII]/[NII] as an Abundance Indicator at High Redshift, MNRAS, 348, L59   DOI   ScienceOn
22 Schmoll, J., Dodsworth, G. N., Content, R., & Allington-Smith, J. R., 2004, Design and Construction of the IMACS-IFU: a 2000-Element Integral Field Unit, Proc. SPIE, 5492, 624
23 Smartt, S. J., 2009, Progenitors of Core-Collapse Supernovae, ARAA, 47, 63   DOI   ScienceOn
24 Smith, N., Li, W., Filippenko, A. V., & Chornock, R., 2011, Observed Fractions of Core-collapse Supernova Yypes and Initial Masses of Their Single and Binary Progenitor Stars, MNRAS, 412, 1522   DOI   ScienceOn
25 Yoon, S.-C., Grafener, G., Vink, J. S., Kozyreva, A., & Izzard, R. G., 2012, On the Nature and Detectability of Type Ib/c Supernova Progenitors, A&A, 544, L11   DOI