Browse > Article
http://dx.doi.org/10.5303/JKAS.2021.54.5.157

ORIGINS OF THE FLOW AND MAGNETIC STRUCTURE INVOLVED IN THE FORMATION AND ERUPTION OF A SOLAR PROMINENCE  

Magara, Tetsuya (Department of Astronomy and Space Science, Kyung Hee University)
Publication Information
Journal of The Korean Astronomical Society / v.54, no.5, 2021 , pp. 157-170 More about this Journal
Abstract
We investigate flow and magnetic structure of a solar prominence with a focus on how the magnetic field originally determined by subsurface dynamics gives rise to the structure. We perform a magnetohydrodynamic simulation that reproduces the self-consistent evolution of a flow and the magnetic field passing freely through the solar surface. By analyzing Lagrangian displacements of magnetized plasma elements, we demonstrate the flow structure that is naturally incorporated to the magnetic structure of the prominence formed via dynamic interaction between the flow and the magnetic field. Our results explain a diverging flow on a U-loop, a counterclockwise downdraft along a rotating field line, acceleration and deceleration of a downflow along an S-loop, and partial emergence of a W-loop, which may play key roles in determining structural properties of the prominence.
Keywords
Sun: filaments, prominences; Sun: magnetic fields; magnetohydrodynamics; methods: numerical;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Martens, P. C. & Zwaan, C. 2001, Origin and Evolution of Filament-Prominence Systems, ApJ, 558, 872   DOI
2 Martin, S. F. 1998, Conditions for the Formation and Maintenance of Filaments, Sol. Phys., 182, 107   DOI
3 Rust, D. M. & Kumar, A. 1994, Helical Magnetic Fields in Filaments, Sol. Phys., 155, 69   DOI
4 Stix, M. 1991, The Sun. An Introduction (Berlin: Springer), 192
5 Vernazza, J. E., Avrett, E. H., & Loeser, R. 1981, Structure of the Solar Chromosphere. III. Models of the EUV Brightness Components of the Quiet Sun, ApJ, 45, 635
6 Parker, E. N. 1955, The Formation of Sunspots from the Solar Toroidal Field, ApJ, 121, 491   DOI
7 Pevtsov, A. A., Balasubramaniam, K. S., & Rogers, J. W. 2003, Chirality of Chromospheric Filaments, ApJ, 595, 500   DOI
8 Priest, E. R. 1998, A Dynamic Dextral-Sinistral Model for the Structure and Evolution of Prominence Magnetic Fields, ASP Conf. Ser., 150, 453
9 Shen, Y., Liu, Y., Liu, Y. D., et al. 2015, Fine Magnetic Structure and Origin of Counter-streaming Mass Flows in a Quiescent Solar Prominence, ApJL, 814, L17   DOI
10 Tandberg-Hanssen, E. 1995, The Nature of Solar Prominences, Astrophys. Space Sci. Lib., 199
11 van Ballegooijen, A. A. & Martens, P. C. H. 1989, Formation and Eruption of Solar Prominences, ApJ, 343, 971   DOI
12 Wedemeyer S., Scullion E., Rouppe van der Voort L., Bosnjak A. and Antolin P. 2001, Are Giant Tornadoes the Legs of Solar Prominences?, ApJ, 774, 123
13 Amari, T., Luciani, J. F., Mikic, Z., et al. 1999, Three-dimensional Solutions of Magnetohydrodynamic Equations for Prominence Magnetic Support: Twisted Magnetic Flux Rope, ApJ, 518, L57   DOI
14 Antiochos, S. K., MacNeice, P. J., & Spicer, D. S. 2000, The Thermal Nonequilibrium of Prominences, ApJ, 536, 494   DOI
15 Aulanier, G. & Demoulin, P. 1998, 3-D Magnetic Configurations Supporting Prominences. I. The Natural Presence of Lateral Feet, A&A, 329, 1125
16 Awasthi, A. K. & Liu, R. 2019, Mass Motion in a Prominence Bubble Revealing a Kinked Flux Rope Configuration, Frontiers Phys., 7, 218   DOI
17 Berger, T., Testa, P., Hillier, A., et al. 2011, Magneto-thermal Convection in Solar Prominences, Nature, 472, 197   DOI
18 Choe, G. S. & Lee, L. C. 1992, Formation of Solar Prominences by Photospheric Shearing Motions, Sol. Phys., 138, 291   DOI
19 Chae, J., Martin, S. F., Yun, H. S., et al. 2001, Small Magnetic Bipoles Emerging in a Filament Channel, ApJ, 548, 497   DOI
20 Chae, J., Moon, Y. J., Park, Y. D. 2005, The Magnetic Structure of Filament Barbs, ApJ, 626, 574   DOI
21 Gold, T. & Hoyle, F. 1960, On the Origin of Solar Flares, MNRAS, 120, 89   DOI
22 Kippenhahn, R. & Schluter, A. 1957, Eine Theorie der solaren Filamente, Z. Astrophys., 43, 36
23 Lites, B. W. 2005, Magnetic Flux Ropes in the Solar Photosphere: The Vector Magnetic Field under Active Region Filaments, ApJ, 622, 1275   DOI
24 Magara, T. & Longcope, D. W. 2003, Injection of Magnetic Energy and Magnetic Helicity into the Solar Atmosphere by an Emerging Magnetic Flux Tube, ApJ, 586, 630   DOI
25 Levens, P. J., Schmieder, B., Labrosse, N., et al. 2016, Structure of Prominence Legs: Plasma and Magnetic Field, ApJ, 818, 31   DOI
26 Gibson, S. E. 2018, Solar Prominences: Theory and Models. Fleshing out the Magnetic Skeleton, Living Rev. Sol. Phys., 15, 7   DOI
27 Kucera, T. A., Ofman, L., & Tarbell, T. D. 2018, Motions in Prominence Barbs Observed on the Solar Limb, ApJ, 859, 121   DOI
28 Lee, H. & Magara, T. 2018, MHD Simulation for Investigating the Dynamic State Transition Responsible for a Solar Eruption in Active Region 12158, ApJ, 859, 132   DOI
29 Low, B. C. 1996, Solar Activity and the Corona, Sol. Phys., 167, 217   DOI
30 Mackay et al. 2010, Magnetic field configurations basic to filament channels and filaments, Physics of Solar Prominences: II. Magnetic Structure and Dynamics, Space Sci. Rev., 151, 333   DOI
31 Magara, T. 2007, A Possible Structure of the Magnetic Field in Solar Filaments Obtained by Flux Emergence, PASJ, 59, L57   DOI
32 Magara, T. 2015, Evolution and Dynamics of a Solar Active Prominence, PASJ, 67, L5   DOI
33 Magara, T. 2019, Merging and Fragmentation in the Solar Active Region 10930 Caused by an Emerging Magnetic Flux Tube with Asymmetric Field-Line Twist Distribution along Its Axis, JKAS, 52, 89
34 Martin, S. F., Bilimoria, R., & Tracadas, P. W. 1994, Magnetic Field Configurations Basic to Filament Channels and Filaments, Solar Surface Magnetism, 433, 303
35 Okamoto, T. J., Tsuneta, S., Lites, B. W., et al. 2008, Emergence of a Helical Flux Rope under an Active Region Prominence, ApJL, 673, L215   DOI
36 Zirin, H. 1988, Astrophysics of the Sun (Cambridge: Cambridge University Press)
37 Wang, H., Chae, J., Yurchyshyn, V., et al. 2001, InterActive Region Connection of Sympathetic Flaring on 2000 February 17, ApJ, 559, 1171   DOI
38 Parenti, S. 2014, Solar Prominences: Observations, Living Rev. Sol. Phys., 11, 1   DOI
39 Magara, T. 2011, A Possible Mechanism of Flux Cancellation via U-Loop Emergence on the Sun, PASJ, 63, 417   DOI
40 Bothmer, V. & Rust, D. M. 1997, The Field Configuration of Magnetic Clouds and the Solar Cycle, in: Crooker, N., Joselyn, J. A., & Feynman, J. (eds.), Coronal Mass Ejections, Geophys. Monogr. Ser., 99, 139
41 Kuperus, M. & Raadu, M. A. 1974, The Support of Prominences Formed in Neutral Sheets, A&A, 31, 189
42 Martin, S. F. & Echols, C. R. 1994, An Observational and Conceptual Model of the Magnetic Field of a Filament, Solar Surface Magnetism, 433, 339   DOI
43 Schmieder, B., Malherbe, J. M., Mein, P., et al. 1984, Dynamics of Solar Filaments. III - Analysis of Steady Flows in Hα and C iv Lines, A&A, 136, 81
44 Magara, T., An, J., Lee, H., & Kang, J. 2011, Half-Turn Rotation of a Polarity Inversion Line and Associated Quadrupolar-Like Structure in the Sun, JKAS, 44, 143