Browse > Article
http://dx.doi.org/10.5303/JKAS.2019.52.4.89

MERGING AND FRAGMENTATION IN THE SOLAR ACTIVE REGION 10930 CAUSED BY AN EMERGING MAGNETIC FLUX TUBE WITH ASYMMETRIC FIELD-LINE TWIST DISTRIBUTION ALONG ITS AXIS  

Magara, Tetsuya (Department of Astronomy and Space Science, Kyung Hee University)
Publication Information
Journal of The Korean Astronomical Society / v.52, no.4, 2019 , pp. 89-97 More about this Journal
Abstract
We demonstrate the subsurface origin of the observed evolution of the solar active region 10930 (AR10930) associated with merging and breakup of magnetic polarity regions at the solar surface. We performed a magnetohydrodynamic simulation of an emerging magnetic flux tube whose field-line twist is asymmetrically distributed along its axis, which is a key to merging and fragmentation in this active region. While emerging into the surface, the flux tube is subjected to partial splitting of its weakly twisted portion, forming separate polarity regions at the solar surface. As emergence proceeds, these separate polarity regions start to merge and then break up, while in the corona sigmoidal structures form and a solar eruption occurs. We discuss what physical processes could be involved in the characteristic evolution of an active region magnetic field that leads to the formation of a sunspot surrounded by satellite polarity regions.
Keywords
Sun: activity; Sun: magnetic fields; magnetohydrodynamics; methods: numerical;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abbett, W. P., Fisher, G. H., & Fan, Y. 2000, The Three-Dimensional Evolution of Rising, Twisted Magnetic Flux Tubes in a Gravitationally Stratified Model Convection Zone, ApJ, 540, 548   DOI
2 Abramenko, V., Yurchyshyn, V., & Wang, H. 2008, Intermittency in the Photosphere and Corona above an Active Region, ApJ, 681, 1669   DOI
3 An, J. M., & Magara, T. 2013, Stability and Dynamics of a Flux Rope Formed via Flux Emergence into the Solar Atmosphere, ApJ, 773, 21   DOI
4 Aschwanden, M. J. 2005, Physics of the Solar Corona. An Introduction with Problems and Solutions, 2nd edn. (Chichester: Praxis Publishing Ltd.)
5 Bharti, L., Joshi, C., & Jaaffrey, S. N. A. 2007, Observations of Dark Lanes in Umbral Fine Structure from the Hinode Solar Optical Telescope: Evidence for Magneto-convection, ApJ, 669, L57   DOI
6 Biskamp, D., & Welter, H. 1980, Coalescence of Magnetic Islands, Phys. Rev. Lett., 44, 1069   DOI
7 Clyne, J., & Rast, M. 2005, A Prototype Discovery Environment for Analyzing and Visualizing Terascale Turbulent Fluid Flow Simulations, Proc. SPIE, 5669, 284
8 Clyne, J., Mininni, P., Norton, A., & Rast, M. 2007, Interactive Desktop Analysis of High Resolution Simulations: Application to Turbulent Plume Dynamics and Current Sheet Formation, New J. Phys., 9, 301   DOI
9 Dorch, S. B. F., & Nordlund, A. 1998, Numerical 3D Simulations of Buoyant Magnetic Flux Tube, A&A, 338, 329
10 Emonet, T., & Moreno-Insertis, F. 1998, The Physics of Twisted Magnetic Tubes Rising in a Stratified Medium: Two-Dimensional Results, ApJ, 492, 804   DOI
11 Fan, Y. 2009, Magnetic Fields in the Solar Convection Zone, Living Rev. Sol. Phys., 6, 4
12 Fan, Y. 2016, Modeling the Initiation of the 2006 December 13 Coronal Mass Ejection in AR 10930: The Structure and Dynamics of the Erupting Flux Rope, ApJ, 824, 93   DOI
13 Finn, J. M., & Kaw, P. K. 1977, Coalescence Instability of Magnetic Islands, Phys. Fluids, 20, 72   DOI
14 Harra, L. K., Williams, D. R., Wallace, A. J., Magara, T., Hara, H., Tsuneta, S., Sterling, A. C., & Doschek, G. A. 2009, Coronal Nonthermal Velocity Following Helicity Injection Before an X-Class Flare, ApJ, 691, L99   DOI
15 Gold, T., & Hoyle, F. 1960, On the Origin of Solar Flares, MNRAS, 120, 89   DOI
16 Golub, L., Deluca, E., Austin, G., et al. 2007, The X-Ray Telescope (XRT) for the Hinode Mission, Sol. Phys., 243, 63   DOI
17 Guo, Y., Ding, M. D., Wiegelmann, T., & Li, H. 2008, 3D Magnetic Field Configuration of the 2006 December 13 Flare Extrapolated with the Optimization Method, ApJ, 679, 1629   DOI
18 Hayashi, T. 1981, Numerical Simulations of Forced Coalescence of Magnetic Islands Generated by a Tearing Mode Instability, J. Phys. Soc. Japan, 50, 3124   DOI
19 Inoue, S., Magara, T., Watari, S., & Choe, G. S. 2012, Nonlinear Force-Free Modeling of a Three-Dimensional Sigmoid Observed on the Sun, ApJ, 747, 65   DOI
20 Isobe, H., et al. 2007, Flare Ribbons Observed with G-Band and FeI 6302? Filters of the Solar Optical Telescope on Board Hinode, PASJ, 59, 807   DOI
21 Knizhnik, K. J., Linton, M. G., & DeVore, C. R. 2018, The Role of Twist in Kinked Flux Rope Emergence and Delta-Spot Formation, ApJ, 864, 89   DOI
22 Kosugi, T., et al. 2007, The Hinode (Solar-B) Mission: An Overview, Sol. Phys., 243, 3   DOI
23 Kubo, M., et al. 2007, Hinode Observations of a Vector Magnetic Field Change Associated with a Flare on 2006 December 13, PASJ, 59, 607   DOI
24 Liu, Y., et al. 2008, A Comprehensive View of the 2006 December 13 CME: From the Sun to Interplanetary Space, ApJ, 689, 563   DOI
25 Magara, T., & Tsuneta, S. 2008, Hinode's Observational Result on the Saturation of Magnetic Helicity Injected into the Solar Atmosphere and Its Relation to the Occurrence of a Solar Flare, PASJ, 60, 1181   DOI
26 Longcope, D. W., Fisher, G. H., & Arendt, S. 1996, The Evolution and Fragmentation of Rising Magnetic Flux Tube, ApJ, 464, 999   DOI
27 Low, B. C. 1996, Solar Activity and the Corona, Sol. Phys., 167, 217   DOI
28 Magara, T. 2001, Dynamics of Emerging Flux Tubes in the Sun, ApJ, 549, 608   DOI
29 Magara, T. 2008, Emergence of a Partially Split Flux Tube into the Solar Atmosphere, PASJ, 60, 809   DOI
30 Magara, T. 2009, Characteristic Development of Magnetic Shear in a Flare-Producing Sunspot Obtained from Vector Magnetic Field Measurements by Hinode, ApJ, 702, 386   DOI
31 Magara, T. 2015, MHD Simulation for Investigating the Evolutionary Path of a Solar Magnetic Field That Emerges, Structures Itself, Erupts, and Produces a Flare, PASJ, 67, L6   DOI
32 Magara, T. 2017, Structural Properties of the Solar Flare-Producing Coronal Current System Developed in an Emerging Magnetic Flux Tube, PASJ, 69, 5   DOI
33 Moon, Y.-J., et al. 2007, Hinode SP Vector Magnetogram of AR10930 and Its Cross-Comparison with MDI, PASJ, 59, 62
34 Parker, E. N. 1955, The Formation of Sunspots from the Solar Toroidal Field, ApJ, 121, 491   DOI
35 Priest, E. R., & Forbes, T. G. 2002, The Magnetic Nature of Solar Flares, A&AR, 10, 313   DOI
36 Pritchett, P. L., & Wu, C. C. 1979, Coalescence of Magnetic Islands, Phys. Fluids, 22, 2140   DOI
37 Spruit, H. C. 1981, Motion of Magnetic Flux Tubes in the Solar Convection Zone and Chromosphere, A&A, 98, 155
38 Schussler, M. 1979, Non-Linear Dynamo Theory - Finite Amplitude Magnetic Fields with Large Scale Circulation in a Compressible Stratified Medium, A&A, 71, 79
39 Shibata, K., & Magara, T. 2011, Solar Flares: Magnetohy-drodynamic Processes, Living Rev. Sol. Phys., 8, 6   DOI
40 Schrijver, C. J., et al. 2008, Nonlinear Force-Free Field Modeling of a Solar Active Region around the Time of a Major Flare and Coronal Mass Ejection, ApJ, 675, 1637   DOI
41 Stix, M. 1991, The Sun. An Introduction (Berlin: Springer-Verlag), 192
42 Su, Y., et al. 2007, Evolution of the Sheared Magnetic Fields of Two X-Class Flares Observed by Hinode/XRT, PASJ, 59, 785   DOI
43 Tan, C., Chen, P. F., Abramenko, V., & Wang, H. 2009, Evolution of Optical Penumbral and Shear Flows Associated with the X3.4 Flare of 2006 December 13, ApJ, 690, 1820   DOI
44 Wang, H., Jing, J., Tan, C., Wiegelmann, T., & Kubo, M. 2008, Study of Magnetic Channel Structure in Active Region 10930, ApJ, 687, 658   DOI
45 Wang, S. J., Yan, Y. H., Liu, Y. Y., Fu, Q. J., Tan, B. L., & Zhang, Y. 2008, Solar Radio Spikes in 2.6 - 3.8 GHz during the 13 December 2006 Event, Sol. Phys., 253, 133   DOI
46 Williams, D. R., Harra, L. K., Brooks, D. H., Imada, S., & Hansteen, V. H. 2009, Evidence from the Extreme-Ultraviolet Imaging Spectrometer for Axial Filament Rotation before a Large Flare, PASJ, 61, 493   DOI
47 Yan, Y., Huang, J., Chen, B., & Sakurai, T. 2007, Diagnostics of Radio Fine Structures around 3 GHz with Hinode Data in the Impulsive Phase of an X3.4/4B Flare Event on 2006 December 13, PASJ, 59, 815   DOI
48 Zhang, J., Li, L., & Song, Q. 2007, Interaction between a Fast Rotating Sunspot and Ephemeral Regions as the Origin of the Major Solar Event on 2006 December 13, ApJ, 662, L35   DOI
49 Zwaan, C. 1985, The Emergence of Magnetic Flux, Sol. Phys., 100, 397   DOI
50 Tsuneta, S., et al. 2008, The Solar Optical Telescope for the Hinode Mission: An Overview, Sol. Phys., 249, 167   DOI