Browse > Article
http://dx.doi.org/10.5303/JKAS.2016.49.2.59

KINETIC PROPERTIES OF MAGNETIC DECREASES OBSERVED IN THE SOLAR WIND AT ~1 AU  

LEE, ENSANG (School of Space Research and Institute of Natural Sciences, Kyung Hee University)
PARKS, GEORDE K. (Space Sciences Laboratory, University of California)
Publication Information
Journal of The Korean Astronomical Society / v.49, no.2, 2016 , pp. 59-64 More about this Journal
Abstract
In this study, we investigate the kinetic properties of magnetic decreases observed in the solar wind at ~1 AU using the Cluster observations. We study two different magnetic decreases: one with a short observation duration of ~2.5 minutes and stable structure and the other with a longer observation duration of ~40 minutes and some fluctuations and substructures. Despite the contrast in durations and magnetic structures, the velocity space distributions of ions are similar in both events. The velocity space distribution becomes more anisotropic along the direction parallel to the magnetic field, which differs from observations obtained at high heliographic latitudes. On the other hand, electrons show different features from the ions. The core component of the electrons shows similar anisotropy to the ions, though the anisotropy is much weaker. However, while ions are heated in the magnetic decreases, the core electrons are slightly cooled, especially in the perpendicular direction. The halo component does not change much in the magnetic decreases from the ambient solar wind. The strahl component is observed only in one of the magnetic decreases. The results imply that the ions and electrons in the magnetic decreases can behave differently, which should be considered for the formation mechanism of the magnetic decreases.
Keywords
solar wind plasma; interplanetary magnetic fields; discontinuities;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, E., & Parks, G. K. 2016, Structure of a Magnetic Decrease Observed in a Corotating Interaction Region, JKAS, 49, 19
2 Neugebauer, M., Goldstein, B. E., Winterhalter, D., et al. 2001, Ion Distributions in Large Magnetic Holes in the Fast Solar Wind, J. Geophys. Res., 106, 5635   DOI
3 Tsurutani, B. T., Dasgupta, B., Galvan, C., et al. 2002a, Phase-Steepened Alfvén Waves, Proton Perpendicular Energization and Creation of Magnetic Holes and Magnetic Decreases: The Ponderomotive Force, Geophys. Res. Lett., 29, 2233
4 Rème, H., Aoustin, C., Bosqued, J. M., et al. 2001, First Multispacecraft Ion Measurements in and near the Earth’s Magnetosphere with the Identical Cluster Ion Spectrometry (CIS) Experiment, Ann. Geophys., 19, 1303   DOI
5 Tsubouchi, K. 2009, AlfvénWave Evolution within Corotating Interaction Regions Associated with the Formation of Magnetic Holes/Decreases, J. Geophys. Res., 114, A02101   DOI
6 Tsurutani, B. T., & Ho, C. M. 1999, A Review of Discontinuities and Alfvén Waves in Interplanetary Space: Ulysses Results, Rev. Geophys., 37, 517   DOI
7 Tsurutani, B. T., Galvan, C., Arballo, J. K., et al. 2002b, Relationship between Discontinuities, Magnetic Holes, Magnetic Decreases, and Nonlinear Alfvén Waves: Ulysses Observations over the Solar Poles, Geophys. Res. Lett., 29, 1528   DOI
8 Tsurutani, B. T., Lakhina, G. S., Pickett, J. S., et al. 2005, Nonlinear Alfvén Waves, Discontinuities, Proton Perpendicular Acceleration, and Magnetic Holes/Decreases in Interplanetary Space and the Magnetosphere: Intermediate Shocks?, Nonlin. Proc. Geophys., 12, 321   DOI
9 Turner, J. M., Burlaga, L. F., Ness, N. F., & Lemaire, J. F. 1977, Magnetic Holes in the Solar Wind, J. Geophys. Res., 82, 1921   DOI
10 Winterhalter, D., Neugebauer, M., Goldstein, B. E., et al. 1994, Ulysses Field and Plasma Observations of Magnetic Holes in the Solar Wind and Their Relation to Mirror-Mode Structures, J. Geophys. Res., 99, 23371   DOI
11 Winterhalter, D., Smith, E. J., Neugebauer, M., Goldstein, B. E., & Tsurutani, B. T. 2000, The Latitudinal Distribution of Solar Wind Magnetic Holes, Geophys. Res. Lett., 27, 1615   DOI
12 Buti, B., Tsurutani, B. T., Neugebauer, M., & Goldstein, B. E. 2001, Generation Mechanism for Magnetic Holes in the Solar Wind, Geophys. Res. Lett., 28, 1355   DOI
13 Balogh, A., Carr, C. M., Acuña, M. H., et al. 2001, The Cluster Magnetic Field Investigation: Overview of In-Flight Performance and Initial Results, Ann. Geophys., 19, 1207   DOI
14 Baumgärtel, K. 1999, Soliton Approach to Magnetic Holes, J. Geophys. Res., 104, 28295   DOI
15 Burlaga, L. F., & Lemaire, J. F. 1978, Interplanetary Magnetic Holes: Theory, J. Geophys. Res., 83, 5157   DOI
16 Chisham, G., Schwartz, S. J., Burgess, D., Bale, S. D., Dunlop, M. W., & Russell, C. T. 2000, Multisatellite Observations of Large Magnetic Depressions in the Solar Wind, J. Geophys. Res., 105, 2325   DOI
17 Escoubet, C. P., Fehringer, M., & Goldstein, M. 2001, The Cluster Mission, Ann. Geophys., 19, 1197   DOI
18 Johnstone, A. D., et al. 1997, PEACE: A Plasma Electron and Current Experiment, Space Sci. Rev., 79, 351   DOI