Browse > Article
http://dx.doi.org/10.5303/JKAS.2015.48.1.21

MASSIVE STRUCTURES OF GALAXIES AT HIGH REDSHIFTS IN THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY FIELDS  

Kang, Eugene (CEOU, Astronomy Program, Department of Physics and Astronomy, Seoul National University)
Im, Myungshin (CEOU, Astronomy Program, Department of Physics and Astronomy, Seoul National University)
Publication Information
Journal of The Korean Astronomical Society / v.48, no.1, 2015 , pp. 21-55 More about this Journal
Abstract
If the Universe is dominated by cold dark matter and dark energy as in the currently popular ${\Lambda}CDM$ cosmology, it is expected that large scale structures form gradually, with galaxy clusters of mass $M{\geq}10^{14}M_{\odot}$ appearing at around 6 Gyrs after the Big Bang (z ~ 1). Here, we report the discovery of 59 massive structures of galaxies with masses greater than a few times $10^{13}M_{\odot}$ at redshifts between z = 0.6 and 4.5 in the Great Observatories Origins Deep Survey fields. The massive structures are identified by running top-hat filters on the two dimensional spatial distribution of magnitude-limited samples of galaxies using a combination of spectroscopic and photometric redshifts. We analyze the Millennium simulation data in a similar way to the analysis of the observational data in order to test the ${\Lambda}CDM$ cosmology. We find that there are too many massive structures (M > $7{\times}10^{13}M_{\odot}$) observed at z > 2 in comparison with the simulation predictions by a factor of a few, giving a probability of < 1/2500 of the observed data being consistent with the simulation. Our result suggests that massive structures have emerged early, but the reason for the discrepancy with the simulation is unclear. It could be due to the limitation of the simulation such as the lack of key, unrecognized ingredients (strong non-Gaussianity or other baryonic physics), or simply a difficulty in the halo mass estimation from observation, or a fundamental problem of the ${\Lambda}CDM$ cosmology. On the other hand, the over-abundance of massive structures at high redshifts does not favor heavy neutrino mass of ~ 0.3 eV or larger, as heavy neutrinos make the discrepancy between the observation and the simulation more pronounced by a factor of 3 or more.
Keywords
cosmology: observations; galaxies: evolution; galaxies: clusters; galaxies: high-redshift;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Smith, K. M., Ferraro, S., & LoVerde, M. 2012, Halo Clustering and gNL-type Primordial Non-Gaussianity, JCAP, 3, 32
2 Smith, K. M., Senatore, L., & Zaldarriaga, M. 2009, Optimal Limits on fNLlocal from WMAP 5-Year Data, JCAP, 9, 6
3 Spergel, D. N., et al. 2003, First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters, ApJS, 148, 175   DOI   ScienceOn
4 Muzzin, A., Wilson, G., Yee, H. K. C., et al. 2009, Two Massive Red-Sequence-Selected Galaxy Clusters at z ∼1.2 in the SpARCS-North Cluster Survey, ApJ, 698, 1934   DOI
5 Park, C., Choi, Y.-Y., Kim, J., et al. 2012, The Challenge of the Largest Structures in the Universe to Cosmology, ApJL, 759, L7   DOI
6 Nastasi, A., Fassbender, R., Böhringer, H., et al. 2011, Discovery of the X-Ray Selected Galaxy Cluster XMMU J0338.8+0021 at z = 1.49. Indications of a Young System with a Brightest Galaxy in Formation, A&A, 532, L6
7 Nonino, M., et al. 2009, Deep U Band and R Imaging of Goods-South: Observations, Data Reduction and First Results, ApJS, 183, 244   DOI
8 Papovich, C., Momcheva, I., Willmer, C. N. A., et al. 2010, A Spitzer-Selected Galaxy Cluster at z = 1.62, ApJ, 716, 1503   DOI
9 Pentericci, L., Kurk, J. D., Röttgering, H. J. A., et al. 2000, A Search for Clusters at High Redshift. II. A Proto Cluster around a Radio Galaxy at z = 2.16, A&A, 361, L25
10 Pérez-González, P. G., Rieke, G. H., Villar, V., et al. 2008, The Stellar Mass Assembly of Galaxies from z = 0 to z = 4: Analysis of a Sample Selected in the Rest-Frame Near-Infrared with Spitzer, ApJ, 675, 234   DOI
11 Kang, E., & Im, M. 2009, Overdensities of Galaxies at z ∼3.7 in Chandra Deep Field-South, ApJL, 691, L33   DOI
12 Kitzbichler, M. G., & White, S. D. M. 2007, The High Redshift Galaxy Population in Hierarchical Galaxy Formation Models, MNRAS, 376, 2   DOI   ScienceOn
13 Harrison, I., & Hotchkiss, S. 2013, A Consistent Approach to Falsifying ΛCDM with Rare Galaxy Clusters, JCAP, 7, 22
14 Hilton, M., et al. 2007, The XMM Cluster Survey: The Dynamical State of XMMXCS J2215.9-1738 at z = 1.457, ApJ, 670, 1000   DOI
15 Gangui, A., Lucchin, F., Matarrese, S., & Mollerach, S.1994, The Three-Point Correlation Function of the Cosmic Microwave Background in Inflationary Models, ApJ, 430, 447   DOI
16 Giodini, S., et al. 2009, Stellar and Total Baryon Mass Fractions in Groups and Clusters Since Redshift 1, ApJ, 703, 982   DOI
17 Giavalisco, M., et al. 2004, The Great Observatories Origins Deep Survey: Initial Results from Optical and Near-Infrared Imaging, ApJL, 600, L93   DOI
18 Gilbank, D. G., Gladders, M. D., Yee, H. K. C., & Hsieh, B. C. 2011, The Red-Sequence Cluster Survey-2 (RCS-2): Survey Details and Photometric Catalog Construction, AJ, 141, 94   DOI   ScienceOn
19 Gilli, R., et al. 2003, Tracing the Large-Scale Structure in the Chandra Deep Field South, ApJ, 592, 721   DOI
20 Gladders, M. D., & Yee, H. K. C. 2005, The Red-Sequence Cluster Survey. I. The Survey and Cluster Catalogs for Patches RCS 0926+37 and RCS 1327+29, ApJS, 157, 1   DOI   ScienceOn
21 Biviano, A., Murante, G., Borgani, S., Diaferio, A., Dolag, K., & Girardi, M. 2006, On the Efficiency and Reliability of Cluster mass Estimates Based on Member Galaxies, A&A, 456, 23
22 Bond, J. R., Efstathiou, G., & Silk, J. 1980, Massive Neutrinos and the Large-Scale Structure of the Universe, Physical Review Letters, 45, 1980   DOI
23 Bruzual, G., & Charlot, S. 2003, Stellar Population Synthesis at the Resolution of 2003, MNRAS, 344, 1000   DOI   ScienceOn
24 Carlberg, R. G., Yee, H. K. C., Ellingson, E., et al. 1996, Galaxy Cluster Virial Masses and Ω, ApJ, 462, 32   DOI
25 Capak, P., et al. 2004, A Deep Wide-Field, Optical, and Near-Infrared Catalog of a Large Area around the Hubble Deep Field North, AJ, 127, 180   DOI   ScienceOn
26 Capak, P. L., Riechers, D., Scoville, N. Z., et al. 2011, A Massive Protocluster of Galaxies at a Redshift of z ∼ 5.3, Nature, 470, 233   DOI   ScienceOn
27 Baldi, M. 2012, Early Massive Clusters and the Bouncing Coupled Dark Energy, MNRAS, 420, 430   DOI   ScienceOn
28 Allen, S. W., Evrard, A. E., & Mantz, A. B. 2011, Cosmological Parameters from Observations of Galaxy Clusters, ARAA, 49, 409   DOI   ScienceOn
29 Andreon, S. 2010, The Stellar Mass Fraction and Baryon Content of Galaxy Clusters and Groups, MNRAS, 407, 263   DOI   ScienceOn
30 Bahcall, N. A., Ostriker, J. P., Perlmutter, S., & Steinhardt, P. J. 1999, The Cosmic Triangle: Revealing the State of the Universe, Science, 284, 1481   DOI   ScienceOn
31 Balestra, I., et al. 2010, The Great Observatories Origins Deep Survey. VLT/VIMOS Spectroscopy in the GOODS-South Field: Part II, A&A, 512, A12
32 Wuyts, S., Labbé, I., Schreiber, N. M. F., et al. 2008, FIRE-WORKS U38-to-24 μm Photometry of the GOODS Chandra Deep Field-South: Multiwavelength Catalog and Total Infrared Properties of Distant Ks-Selected Galaxies, ApJ, 682, 985   DOI
33 Waizmann, J.-C., Ettori, S., & Moscardini, L. 2012, An Application of Extreme Value Statistics to the Most Massive Galaxy Clusters at Low and High Redshifts, MNRAS, 420, 1754   DOI   ScienceOn
34 Waizmann, J.-C., Ettori, S., & Bartelmann, M. 2013, Order Statistics Applied to the Most Massive and Most Distant Galaxy Clusters, MNRAS, 432, 914   DOI
35 LoVerde, M., & Smith, K. M. 2011, The Non-Gaussian Halo Mass Function with fNL, gNL and τNL, JCAP, 8, 3
36 Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, Measurements of Ω and Λ from 42 High-Redshift Supernovae, ApJ, 517, 565   DOI
37 Popesso, P., et al. 2009, The Great Observatories Origins Deep Survey. VLT/VIMOS Spectroscopy in the GOODS South Field, A&A, 494, 443
38 Reed, D. S., Bower, R., Frenk, C. S., et al. 2007, The Halo Mass Function from the Dark Ages through the Present Day, MNRAS, 374, 2   DOI   ScienceOn
39 McCarthy, P. J., Yan, H., Abraham, R. G., et al. 2007, A Compact Cluster of Massive Red Galaxies at a Redshift of 1.5, ApJL, 664, L17   DOI
40 Mainieri, V., et al. 2008, The VLA Survey of the Chandra Deep Field-South. II. Identification and Host Galaxy Properties of Submillijansky Sources, ApJS, 179, 95   DOI
41 Mantz, A., Allen, S. W., Rapetti, D., & Ebeling, H. 2010, The Observed Growth of Massive Galaxy clusters - I. Statistical Methods and Cosmological Constraints, MNRAS, 406, 1759
42 Marulli, F., Carbone, C., Viel, M., Moscardini, L., & Cimatti, A. 2011, Effects of Massive Neutrinos on the Large-Scale Structure of the Universe, MNRAS, 418, 346   DOI   ScienceOn
43 Menanteau, F., Hughes, J. P., Sifon, C., et al. 2012, The Atacama Cosmology Telescope: ACT-CL J0102-4915 “El Gordo,” a Massive Merging Cluster at Redshift 0.87, ApJ, 748, 7   DOI
44 Mortonson, M. J., Hu, W., & Huterer, D. 2011, Simultaneous Falsification of CDM and Quintessence with Massive, Distant Clusters, Physical Review D, 83, 02315
45 Haiman, Z., Mohr, J. J., & Holder, G. P. 2001, Constraints on Cosmological Parameters from Future Galaxy Cluster Surveys, ApJ, 553, 545   DOI
46 Gonzalez, A. H., Stanford, S. A., Browdin, M., et al. 2012, IDCS J1426.5+3508: Cosmological Implications of a Massive, Strong Lensing Cluster at z = 1.75, ApJ, 753, 163   DOI
47 Goto, T., Hanami, H., Im, M., et al. 2008, Galaxy Clusters at 0.9 < z < 1.7 in the AKARI NEP Deep Field, PASJ, 60, 531   DOI
48 Grossi, M., Dolag, K., Branchini, E., Matarrese, S., & Moscardini, L. 2007, Evolution of Massive Haloes in Non-Gaussian Scenarios, MNRAS, 382, 1261   DOI   ScienceOn
49 Harrison, I., & Coles, P. 2012, Testing Cosmology with Extreme Galaxy Cluster, MNRAS, 421, L19   DOI   ScienceOn
50 D’Amico, G., Musso, M., Norena, J., & Paranjape, A. 2011, An Improved Calculation of the Non-Gaussian Halo Mass Function, JCAP, 2, 1
51 Doherty, M., et al. 2010, Optical and Near-IR Spectroscopy of Candidate Red Galaxies in Two z ∼ 2.5 Proto-Clusters, A&A, 509, A83
52 Dawson, S., et al. 2001, Serendipitously Detected Galaxies in the Hubble Deep Field, AJ, 122, 598   DOI   ScienceOn
53 De Lucia, G., & Blaizot, J. 2007, The Hierarchical Formation of the Brightest Cluster Galaxies, MNRAS, 375, 2   DOI   ScienceOn
54 Díaz-Sánchez, A., Villo-Pérez, I., Pérez-Garrido, A., & Rebolo,R. 2007, A Low Mass Cluster of Extremely RedGalaxies at z = 1.10 in the GOODS Southern Field, MNRAS, 377, 516   DOI   ScienceOn
55 Springel, V., White, S. D. M., Jenkins, A., et al. 2005, Simulations of the Formation, Evolution and Clustering of Galaxies and Quasars, Nature, 435, 629   DOI   ScienceOn
56 Barger, A. J., Cowie, L. L., & Wang, W.-H. 2008, A Highly Complete Spectroscopic Survey of the GOODS-N Field1, ApJ, 689, 687   DOI
57 Bayliss, M. B., Ashby, M. L. N., Ruel, J., et al. 2014, SPT-CLJ2040-4451: An SZ-Selected Galaxy Cluster at z = 478 With Significant Ongoing Star Formation, ApJ, 794, 12   DOI
58 Wang, W.-H., Cowie, L. L., Barger, A. J., Keenan, R. C., & Ting, H.-C. 2010, Ultradeep KS Imaging in the GOODS-N, ApJS, 187, 251   DOI
59 Williamson, R., Benson, B. A., High, F. W., et al. 2011, A Sunyaev-Zel’dovich-Selected Sample of the Most Massive Galaxy Clusters in the 2500 deg2 South Pole Telescope Survey, ApJ, 738, 139   DOI
60 Wold, M., et al. 2003, Overdensities of Extremely Red Objects in the Fields of High-Redshift Radio-Loud Quasars, AJ, 126, 1776   DOI   ScienceOn
61 Toshikawa, J., Kashikawa, N., Ota, K., et al. 2012, Discovery of a Protocluster at z ∼ 6, ApJ, 750, 137   DOI
62 Stalder, B., Ruel, J., Suhada, R., et al. 2013, SPT-CLJ0205-5829: A z = 1.32 Evolved Massive Galaxy Cluster in the South Pole Telescope Sunyaev-Zel’dovich Effect Survey, ApJ, 763, 93   DOI
63 Stanford, S. A., et al. 2006, The XMM Cluster Survey: A Massive Galaxy Cluster at z = 1.45, ApJL, 646, L13   DOI
64 Szokoly, G. P., et al. 2004, The Chandra Deep Field-South: Optical Spectroscopy. I, ApJS, 155, 271   DOI   ScienceOn
65 Vanzella, E., et al. 2005, The Great Observatories Origins Deep Survey. VLT/FORS2 Spectroscopy in the GOODS-SouthField, A&A, 434, 53
66 Vanzella, E., et al. 2006, The Great Observatories Origins Deep Survey. VLT/FORS2 Spectroscopy in the GOODS-SouthField: Part II, A&A, 454, 423
67 Vanzella, E., et al. 2008, The Great Observatories Origins Deep Survey. VLT/FORS2 Spectroscopy in the GOODS-SouthField: Part III, A&A, 478, 83
68 Muzzin, A. V. 2008, An Infrared Study of Distant Galaxy Clusters, Ph.D. Thesis
69 Moster, B. P., Somerville, R. S., Maulbetsch, C., et al. 2010, Constraints on the Relationship between Stellar Mass and Halo Mass at Low and High Redshift, ApJ, 710, 903   DOI
70 Morrison, G. E., Owen, F. N., Dickinson, M., Ivison, R. J., & Ibar, E. 2010, Very Large Array 1.4 GHz Observations of the GOODS-North Field: Data Reduction and Analysis, ApJS, 188, 178   DOI
71 Komatsu, E., & Spergel, D. N. 2001, Acoustic Signatures in the Primary Microwave Background Bispectrum, PRD, 63, 063002   DOI   ScienceOn
72 Kurk, J. D., et al. 2000, A Search for Clusters at High Redshift. I. Candidate Lyalpha Emitters near 1138-262 at z = 2.2, A&A, 358, L1
73 Komatsu, E. 2010, Hunting for Primordial Non-Gaussianity in the Cosmic Microwave Background, Classical and Quantum Gravity, 27, 124010   DOI   ScienceOn
74 Komatsu, E., et al. 2011, Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, ApJS, 192, 18   DOI
75 Kuiper, E., Hatch, N. A., Venemans, B. P., et al. 2011, Discovery of a High-z Protocluster with Tunable Filters: the Case of 6C0140+326 at z = 4.4, MNRAS, 417, 1088   DOI   ScienceOn
76 Kurk, J., et al. 2009, GMASS Ultradeep Spectroscopy of Galaxies at z ∼ 2. V. Witnessing the Assembly at z = 1.6 of a Galaxy Cluster, A&A, 504, 331
77 Le Fevre, O., Deltorn, J. M., Crampton, D., & Dickinson, M. 1996, Clustering around the Radio Galaxy MRC 0316-257 at Z = 3.14, ApJL, 471, L11   DOI
78 Lesgourgues, J., & Pastor, S. 2006, Massive Neutrinos and Cosmology, PRep, 429, 307
79 Elbaz, D., Daddi, E., Le Borgne, D., et al. 2007, The Reversal of the Star Formation-Density Relation in the Distance Universe, A&A, 468, 33
80 Eisenstein, D. J., Zehavi, I., Hogg, D. W., et al. 2005, Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies, ApJ, 633, 560   DOI
81 Curto, A., Martínez-González, E., Mukherjee, P., et al. 2009, Wilkinson Microwave Anisotropy Probe 5-yr Constraints on fnl with Wavelets, MNRAS, 393, 615   DOI   ScienceOn
82 Daddi, E., Dannerbauer, H., Stern, D., et al. 2009, Two Bright Submillimeter Galaxies in a z = 4.05 Protocluster in Goods-North, and Accurate Radio-Infrared Photometric Redshifts, ApJ, 694, 1517   DOI
83 Fassbender, R., Nastasi, A., Böhringer, H., et al. 2011, The X-Ray Luminous Galaxy Cluster XMMU J1007.4+1237 at z = 1.56. The Dawn of Starburst Activity in Cluster Cores, A&A, 527, L10
84 Carlesi, E., Knebe, A., Yepes, G., et al. 2012, N-Body Simulations with a Cosmic Vector for Dark Energy, MNRAS, 424, 699   DOI   ScienceOn
85 Chae, K.-H., Biggs, A. D., Blandford, R. D., et al. 2002, Constraints on Cosmological Parameters from the Analysis of the Cosmic Lens All Sky Survey Radio-Selected Gravitational Lens Statistics, Physical Review Letters, 89, 151301   DOI   ScienceOn
86 Cayón, L., Gordon, C., & Silk, J. 2011, Probability of the Most Massive Cluster under Non-Gaussian Initial Conditions, MNRAS, 415, 849   DOI   ScienceOn
87 Charlot, S., & Fall, S. M. 2000, A Simple Model for the Absorption of Starlight by Dust in Galaxies, ApJ, 539, 718   DOI
88 Chiba, M., & Yoshii, Y. 1997, Do Lensing Statistics Rule Out a Cosmological Constant?, ApJ, 489, 485   DOI
89 Venemans, B. P., et al. 2007, Protoclusters Associated with z > 2 Radio Galaxies . I. Characteristics of High Redshift Protoclusters, A&A, 461, 823
90 Vanzella, E., et al. 2009, Spectroscopic Observations of Lyman Break Galaxies at Redshifts 4, 5, and 6 in the Goods-South Field, A&A, 695, 1163
91 Verde, L., Wang, L., Heavens, A. F., & Kamionkowski, M. 2000, Large-Scale Structure, the Cosmic Microwave Background and Primordial Non-Gaussianity, MNRAS, 313, 141   DOI   ScienceOn
92 Retzlaff, J., Rosati, P., Dickinson, M., Vandame, B., Rité, C., Nonino, M., Cesarsky, C., & GOODS Team. 2010, The Great Observatories Origins Deep Survey. VLT/ISAAC Near-Infrared Imaging of the GOODS-SouthField, A&A, 511, A50
93 Santini, P., et al. 2009, Star Formation and Mass Assembly in High Redshift Galaxies, A&A, 504, 751
94 Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, AJ, 116, 1009   DOI   ScienceOn
95 Salimbeni, S., et al. 2009, A Comprehensive Study of Large-Scale Structures in the GOODS-SOUTH Field up to z ∼2.5, A&A, 501, 865
96 Salopek, D. S., & Bond, J. R. 1990, Nonlinear Evolution of Long-Wavelength Metric Fluctuations in Inflationary Models, PRD, 42, 3936   DOI   ScienceOn
97 Scoville, N., Arnouts, S., Aussel, H., et al. 2013, Evolution of Galaxies and Their Environments at z = 0.1 − 3 in Cosmos, ApJS, 206, 3   DOI
98 Seljak, U., Makarov, A., McDonald, P., et al. 2005, Cosmological Parameter Analysis Including SDSS Ly𝛼 Forest and Galaxy Bias: Constraints on the Primordial Spectrum of Fluctuations, Neutrino Mass, and Dark Energy, PRD, 71, 103515   DOI
99 Kravtsov, A. V., & Borgani, S. 2012, Formation of Galaxy Clusters, ARAA, 50, 353   DOI   ScienceOn
100 Li, I. H., Yee, H. K. C., Hsieh, B. C., & Gladders, M. 2012, Evolution of Group Galaxies from the First Red-Sequence Cluster Survey, ApJ, 749, 150   DOI
101 Kodama, T., Tanaka, I., Kajisawa, M., Kurk, J., Venemans, B., De Breuck, C., Vernet, J., & Lidman, C. 2007, The First Appearance of the Red Sequence of Galaxies in Proto-Clusters at 2 ≲ z ≲ 3, MNRAS, 377, 1717   DOI   ScienceOn
102 Holz, D. E., & Perlmutter, S. 2012, The Most Massive Objects in the Universe, ApJL, 755, L36   DOI
103 Jarosik, N., et al. 2011, Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results, ApJS, 192, 14   DOI
104 Hotchkiss, S. 2011, Quantifying the Rareness of Extreme Galaxy Clusters, JCAP, 7, 4
105 Im, M., Simard, L., Faber, S. M., et al. 2002, The DEEP Groth Strip Survey. X. Number Density and LuminosityFunction of Field E/S0 Galaxies at z < 1, ApJ, 571, 136   DOI
106 Im, M., Griffiths, R. E., & Ratnatunga, K. U. 1997, A Measurement of the Cosmological Constant Using Elliptical Galaxies as Strong Gravitational Lenses, ApJ, 475, 457   DOI
107 Jee, M. J., Rosati, P., Ford, H. C., et al. 2009, Hubble Space Telescope Weak-Lensing Study of the Galaxy Cluster XMMU J2235.3 - 2557 at z ∼ 1.4: A Surprisingly Massive Galaxy Cluster When the Universe is One-third of its Current Age, ApJ, 704, 672   DOI
108 Kajisawa, M., et al. 2006, Protoclusters with Evolved Populations around Radio Galaxies at z ∼ 2.5, MNRAS, 371, 577   DOI   ScienceOn
109 Collins, C. A., Stott, J. P., Hilton, M., et al. 2009, Early Assembly of the Most Massive Galaxies, Nature, 458, 7865
110 Colless, M., et al. 2001, The 2dF Galaxy Redshift Survey: Spectra and Redshifts, MNRAS, 328, 1039   DOI   ScienceOn
111 Cooper, M. C., et al. 2011, The DEEP3 Galaxy Redshift Survey: Keck/DEIMOS Spectroscopy in the GOODS-N Field, ApJS, 193, 14   DOI
112 Coupon, J., Kilbinger, M., McCracken, H. J., et al. 2012, Galaxy Clustering in the CFHTLS-Wide: the Changing Relationship between Galaxies and Haloes Since z ∼ 1.2, A&A, 542, A5
113 Cucciati, O., Zamorani, G., Lemaux, B. C., et al. 2014, Discovery of a Rich Proto-Cluster at z = 2.9 and Associated Diffuse Cold Gas in the VIMOS Ultra-Deep Survey(VUDS), A&A, 570, 16
114 Behroozi, P. S., Conroy, C., &Wechsler, R. H. 2010, A Comprehensive Analysis of Uncertainties Affecting the Stellar Mass-Halo Mass Relation for 0 <z <4, ApJ, 717, 379   DOI
115 Bielby, R. M., Finoguenov, A., Tanaka, M., et al. 2010, The WIRCAM Deep Infrared Cluster Survey. I. Groups and Clusters at z ≳ 1.1, A&A, 523, A66
116 Benson, B. A., de Haan, T., Dudley, J. P., et al. 2013, Cosmological Constraints from Sunyaev-Zel’dovich-Selected Clusters with X-Ray Observations in the First 178 deg2 of the South Pole Telescope Survey, ApJ, 763, 147   DOI
117 Benítez, N. 2000, Bayesian Photometric Redshift Estimation, ApJ, 536, 571   DOI
118 Bertin, E., & Arnouts, S. 1996, SExtractor: Software for Source Extraction, A&A Suppl., 117, 393
119 Castellano, M., et al. 2007, A Photometrically Detected Forming Cluster of Galaxies at Redshift 1.6 in the GOODS Field, ApJ, 671, 1497   DOI