Browse > Article
http://dx.doi.org/10.5303/JKAS.2012.45.2.39

NON-LTE EFFECTS ON THE H3+ ROVIBRATIONAL POPULATION IN THE JOVIAN IONOSPHERE  

Kim, Yong-Ha (Department of Astronomy and Space Science, Chungnam National University)
Publication Information
Journal of The Korean Astronomical Society / v.45, no.2, 2012 , pp. 39-48 More about this Journal
Abstract
We investigate non-LTE effects on the $H_3^+$ level populations to help the analysis of the observed 2 and 3.5 micron $H_3^+$ emissions from the Jovian ionosphere. We begin by constructing a simple three-level model, in order to compute the intensity ratio of the R(3,4) line in the hot band to the Q(1,0) line in the fundamental band, which have been observed in the Jovian auroral regions. We find that non-LTE effects produce only small changes in the intensity ratios for ambient $H_2$ densities less than or equal to $5{\times}10^{11}cm^{-3}$. We then construct two comprehensive models by including all the collisional and radiative transitions between pairs of more than a thousand known $H_3^+$ rovibrational levels with energies less than 10000 $cm^{-1}$. By employing these models, we find that the intensity ratios of the lines in the hot and fundamental bands are affected greatly by non-LTE effects, but the details depend sensitively on the number of collisional and radiative transitions included in the models. Non-LTE effects on the rovibrational population become evident at about the same ambient $H_2$ densities in the comprehensive models as in the three-level model. However, the models show that rotational temperatures derived from the intensities of rotational lines in the ${\nu}_2$ and $2{\nu}_2$ bands may differ significantly from the ambie temperatures in the non-LTE regime. We find that significant non-LTE effects appear near and above the $H_3^+$ peak, and that the kinetic temperatures in the Jovian thermospheric temperatures derived from the observed line ratios in the 2 and 3.5 micron $H_3^+$ emissions are highly model dependent.
Keywords
Planets: Jupiter; Ionosphere: Modeling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Raynaud, E., Lellouch, E., Maillard, J.-P., Gladstone, G. R., Waite, Jr. J. H., Bezard, B., Drossart, P., & Fouchet, T. 2004, Spectros-Imaging Observations of Jupiter's 2 Micron Auroral Emission. I. $H^{+}_{3}$ Distribution and Tem- perature, Icarus, 171, 133   DOI   ScienceOn
2 Stallard, T., Miller, S., Millward, G., & Joseph, R. D. 2002, On the Dynamics of the Jovian Ionosphere and Thermo- sphere II. The Measurement of $H^{+}_{3}$ Vibrational Temper- ature, Column Density, and Total Emission, Icarus, 156, 498   DOI   ScienceOn
3 Lam, H. A., Achilleos, N., Miller, S., Tennyson, J., Trafton, L. M., Geballe, T. R., & Ballester, G. E. 1997, A Baseline Spectroscopic Study of te Infrared Auroras of Jupiter, Icarus, 127, 379   DOI   ScienceOn
4 Leu, M. T., Biondi, M. A., & Johnsen, R. 1973, Measure- ments of Recombination of Electrons with $H^{+}_{3}$ and $H^{+}_{5}$ Ions, Phys. Rev. A. 8, 413   DOI
5 Lindsay, C. M., & McCall, B. J. 2001, Comprehensive Eval- uation and Compilation of $H^{+}_{3}$ Spectroscopy, J. Mol. Spec., 219, 60
6 Neale, L., Miller, S., & Tennyson, J. 1996, Spectroscopic Properties of the $H^{+}_{3}$ Molecule: a New Calculated Line List, ApJ, 464, 516   DOI
7 Maillard, J.-P., Drossart, P., Watson, J. K. G., Kim, S. J., & Caldwell, J. 1990, $H^{+}_{3}$ Fundamental Band in Jupiter's Auroral Zones at High Resolution from 2400 to 2600 In- verse Centimeters, ApJ, 363, 37   DOI
8 Melin, H., Miller, S., Stallard, T., & Grodent, D. 2005, Non-LTE Effects on $H^{+}_{3}$ Emission in the Jovian Upper Atmosphere, Icarus, 178, 97   DOI   ScienceOn
9 Miller, S., Archilleos, N., Ballester, G. E., Lam, H., Ten- nyson, J., Geballe, T. R., & Trafton, L. M. 1997, Mid- To-Low Latitudes $H^{+}_{3}$ Emission from Jupiter, Icarus, 130, 57   DOI   ScienceOn
10 Oka, T., & Epp, E. 2004, The Nonthermal Rotational Dis- tribution of $H^{+}_{3}$ , ApJ, 613, 349   DOI   ScienceOn
11 Perry, J. J., Kim, Y. H., & Fox, J. L. 1999, Chemistry of the Jovian Auroral Ionosphere, Journ. Geophys. Res., 104, 16, 541
12 Plasil, R., Glosik, J., Poterya, V., Kudrna, P., Rusz, J., & Tichy, M. 2002, Advanced Integrated Stationary After- glow Method for Experimental Study of Recombination of Processes of $H^{+}_{3}$ and $D^{+}_{3}$ Ions with Electrons, Int. J. Mass Spect., 218, 105   DOI   ScienceOn
13 Grodent, D., Waite, Jr. J. H., & Gerard, J.-C. 2001, A Self- Consistent Model of the Jovian Auroral Thermal Structure, J. Geophys. Res., 106, 12933   DOI
14 Adams, N. G., Smith, D., & Alge, E. J. 1984, Measurements of Dissociative Recombination Coefficients of H3(+), HCO(+), N2H(+) and CH5(+) at 95 and 300K Using the FALP Apparatus , Chem. Phs., 81, 1778
15 Dickinson, A. S., Phillips, T. G., Goldsmith, P. F., Percival, L. C., & Richards, D. 1977, Rotational Excitation of Molecules by Electrons in Interstellar Clouds, A&A, 54, 645
16 Drossart, P., & 11 Colleagues. 1989, Detection of $H^{+}_{3}$ on Jupiter, Nature, 340, 539   DOI
17 Johnsen, R., & Guberman, S. L. 2010, Chapter 3. Dissocia- tive Recombination of $H^{+}_{3}$ Ions with Electrons: Theory and Experiment, Advances in Atomic, Molecular, and Optical Physics, 59, 75   DOI
18 Kim, Y. H., Fox, J. L., & Porter, H. S. 1992, Densities and Vibrational Distribution of $H^{+}_{3}$ in the Jovian Auroral Ionosphere, J. Geophys. Res., 97, 6093   DOI
19 Kim, Y. H., Pesnell, W. D., Grebowsky, J. M., & Fox, J. L. 2001, Meteoric Ions in the Ionosphere of Jupiter, Icarus, 150, 261   DOI   ScienceOn
20 Kokoouline, V., Faure, A., & Tennyson, J. 2010, Calcula- tion of Rate Constatns for Vibrational and Rotational Excitation of the $H^{+}_{3}$ Ion by Electron Impact, MNRAS, 405, 1195
21 Kreckel, H., & 22 Co-Authors. 2005, High-Resolution Dis- sociative Recombination of Cold $H^{+}_{3}$ and First Evidence for Nuclear Spin Effects, PRL, 95, 263201   DOI   ScienceOn