Browse > Article
http://dx.doi.org/10.5303/JKAS.2004.37.4.199

ON THE GALACTIC SPIRAL PATTERNS: STELLAR AND GASEOUS  

MARTOS MARCO (Instituto de Astronomfa, Universidad Nacional Autonoma de Mexico)
YANEZ MIGUEL (Instituto de Astronomfa, Universidad Nacional Autonoma de Mexico)
HERNANDEZ XAVIER (Instituto de Astronomfa, Universidad Nacional Autonoma de Mexico)
MORENO EDMUNDO (Instituto de Astronomfa, Universidad Nacional Autonoma de Mexico)
PICHARDO BARBARA (Instituto de Astronomfa, Universidad Nacional Autonoma de Mexico)
Publication Information
Journal of The Korean Astronomical Society / v.37, no.4, 2004 , pp. 199-203 More about this Journal
Abstract
The gas response to a proposed spiral stellar pattern for our Galaxy is presented here as calculated via 2D hydrodynamic calculations utilizing the ZEUS code in the disk plane. The locus is that found by Drimmel (2000) from emission profiles in the K band and at 240 ${\mu}m$. The self-consistency of the stellar spiral pattern was studied in previous work (see Martos et al. 2004). It is a sensitive function of the pattern rotation speed, $\Omega$p, among other parameters which include the mass in the spiral and its pitch angle. Here we further discuss the complex gaseous response found there for plausible values of $\Omega$p in our Galaxy, and argue that its value must be close to $20 km s^{-l}\;kpc^{-1}$ from the strong self-consistency criterion and other recent, independent studies which depend on such parameter. However, other values of $\Omega$p that have been used in the literature are explored to study the gas response to the stellar (K band) 2-armed pattern. For our best fit values, the gaseous response to the 2-armed pattern displayed in the K band is a four-armed pattern with complex features in the interarm regions. This response resembles the optical arms observed in the Milky Way and other galaxies with the smooth underlying two-armed pattern of the old stellar disk populations in our interpretation. The complex gaseous response appears to be related to resonances in stellar orbits. Among them, the 4:1 resonance is paramount for the axisymmetric Galactic model employed, and the set of parameters explored. In the regime seemingly proper to our Galaxy, the spiral forcing appears to be marginally strong in the sense that the 4:1 resonance terminates the stellar pattern, despite its relatively low amplitude. In current work underway, the response for low values of $\Omega$p tends to remove most of the rich structure found for the optimal self-consistent model and the gaseous pattern is ring-like. For higher values than the optimal, more features and a multi-arm structure appears.
Keywords
Galaxy: kinematics and dynamics; Galaxy: spiral; Galaxy: fundamental parameters; Galaxy: structure; ISM: structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yuan, C., 1969, ApJ, 158, 871   DOI
2 Lin, C.C., Yuan, C. & Shu, F., 1969, ApJ, 155, 721   DOI
3 Martos, M. & Cox, D.P., 1998, ApJ, 509, 703   DOI   ScienceOn
4 Martos, M., Herna$\dez, X., Y$\$\~{n}$ez, M., Moreno, E. & Pichardo, B. 2004, MNRAS, 350, 47 (P1)   DOI   ScienceOn
5 Miyamoto, M. & Nagai, R., 1975, Pub.Astr.Soc.Japan, 27, 533
6 Patsis, P.A., Contopoulos, G., & Grosb$\phi$l, P., 1991, A & A, 243, 373
7 Patsis, P.A., Grosb$\phi$l, P. & Hiotelis, N., 1997, A & A, 323, 762
8 Pichardo, B. 2003, Ph.D. thesis, UNAM
9 Pichardo, B., Martos, M., Moreno, E. & Espresate, J., 2003, ApJ, 582, 230   DOI   ScienceOn
10 Kennicutt, R., 1989, ApJ, 344, 685   DOI
11 Kranz, T., Slyz, A. & Rix, H.-W., 2001, ApJ, 562, 164   DOI   ScienceOn
12 Pichardo, B., Martos, M. & Moreno, E., 2004, ApJ, 609, 144   DOI   ScienceOn
13 Shaviv, N.J., 2002, Phys. Rev. Lett., 89, 051102
14 Stone, J.M. & Norman, M.L., 1992a, ApJS, 80, 753   DOI
15 Stone, J.M. & Norman, M.L., 1992b, ApJS, 80, 791   DOI
16 Vall$\e, J.P., 2002, ApJ, 566, 261   DOI   ScienceOn
17 Y$\$\~{n}$ez, M. & Martos, M., 2004, in preparation
18 Chakrabarti, S., Laughlin, G. & Shu, F., 2003, ApJ, 596, 220   DOI   ScienceOn
19 Contopoulos, G. & Grosb$\phi$l, R, 1988 A & A, 197, 83
20 Contopoulos, G. & Grosb$\phi$l, P., 1986 A & A, 155, 11
21 Dehnen, W. & Binney, J., 1998, MNRAS, 294, 429   DOI   ScienceOn
22 Drimmel, R., 2000, A & A, 358, L13
23 Drimmel, R., & Spergel, D., 2001, ApJ, 556, 181   DOI   ScienceOn
24 Englmaier, P. & Gerhard, O,, 1999, MNRAS, 304, ,512   DOI   ScienceOn
25 Freudenreich, H. T., 1998, ApJ, 492, 495   DOI   ScienceOn
26 de la Fuente marcos, R,., de la Fuente marcos, C., 2004, New Astronomy, 9, 475   DOI   ScienceOn
27 Andhevsky, S.M., Luck, R.E., Martin, P. & Lepine, J.R.D., 2004, A & A, 413, 159   DOI   ScienceOn
28 Bissantz, N., Englmaier, P. & Gerhard, O., 2003, MN RAS, 340, 949   DOI   ScienceOn
29 G$\mez, G. & Cox, D.P., 2002, ApJ, 580, 235   DOI   ScienceOn
30 Gorgelin, Y.M. & Gorgelin, Y.P., 1976, A & A, 49, 57
31 Grosb$\phi$l, P. & Patsis, R, 2001, in Funes J. G., Corsini E. M., eds, ASP Conf. Ser. Vol. 230, Galaxy Disk and Disk Galaxies. Astron. Soc. Pac., San Francisco, p. 305
32 Hern$\ndez, X., Valls-Gabaud, D. & Gilmore, G., 2000, MNRAS 316, 605   DOI   ScienceOn
33 Allen, C. & Santill$\n, A., 1991, RMxAA, 22, 255