Browse > Article
http://dx.doi.org/10.5303/JKAS.2004.37.3.091

MASS-TO-LIGHT RATIO AND THE TULLY-FISHER RELATION  

RHEE MYUNG-HYUN (Yonsei University Observatory, Yonsei University)
Publication Information
Journal of The Korean Astronomical Society / v.37, no.3, 2004 , pp. 91-117 More about this Journal
Abstract
We analyze the dependence of the mass-to-light ratio of spiral galaxies on the present star formation rate (SFR), and find that galaxies with high present star formation rates have low mass-to-light ratios, presumably as a result of the enhanced luminosity. On this basis we argue that variations in the stellar content of galaxies result in a major source of intrinsic scatter in the Tully-Fisher relation (TF relation). Ideally one should use a 'population-corrected' luminosity. We have also analyzed the relation between the (maximum) luminous mass and rotational velocity, and find it to have a small scatter. We therefore propose that the physical basis of the Tully-Fisher relation lies in a relationship between the luminous mass and rotational velocity, in combination with a 'well-behaved' relation between luminous and dark matter. This implies that the Tully-Fisher relation is a combination of two independent relations: (i) a relation between luminosity and (luminous) mass, based mainly on the star formation history in galaxies, and (ii) a relation between mass and rotation velocity, which is the outcome of the process of galaxy formation. In addition to a 'population-corrected' Tully-Fisher relation, one may also use the relation between mass and luminosity, and the relation between luminous mass and rotation velocity as distance estimators.
Keywords
galaxies: distances and redshifts; galaxies: fundamental parameters; galaxies: kinematics and dynamics; galaxies: spiral; distance scale;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bothun, G. D., & Mould, J. R. 1987, Sources of error in the Tully-Fisher relation - Reducing the scatter with CCD I-band surface photometry of spiral galaxies, ApJ, 313, 629   DOI
2 Whitmore, B. C 1984, An objective classification system for spiral galaxies. I The two dominant dimensions, ApJ, 278, 61   DOI
3 Zaritsky, D. 1995, Evidence for Recent Accretion in Nearby Galaxies, ApJ, 448, L17   DOI
4 Silk, J. 1992, The rate of star formation in galactic disks, Aust. J. Phys., 45, 437   DOI
5 Silk, J. 1989, Is cosmic drift a cosmic myth?, ApJ, 345, L1   DOI
6 Thronson, H. A., & Greenhouse, M. A. 1988, Near-infrared mass-to-light ratios in galaxies - Stellar mass and star formation in the heart of the Whirlpool, ApJ, 327, 671   DOI
7 Tinsley, B. M. 1981, Correlation of the dark mass in galaxies with Hubble type, MNRAS, 194, 63   DOI
8 Tully, R. B., & Fisher, J. R. 1977, A new method of determining distances to galaxies, A&A, 54, 661
9 Tully, R B., & Pierce, M. J. 2000, Distances to Galaxies from the Correlation between Luminosities and Line Widths. III. Cluster Template and Global Measurement of Ho, ApJ, 533, 744   DOI   ScienceOn
10 van Albada, T. S., Bahcall, J. N., Begeman, K., & Sancisi, R 1985, Distribution of dark matter in the spiral galaxy NGC 3198, ApJ, 295, 305   DOI
11 van der Kruit, P. C., & Searle, L. 1981, Surface photometry of edge-on spiral galaxies. I - A model for the threedimensional distribution of light in galactic disks. II - The distribution of light and colour in the disk and spheroid of NGC 891, A&A, 95, 105
12 Verheijen, M. A. W. 1997, The Ursa Major Cluster of Galaxies: TF-relations and dark matter, PhD Thesis, University of Groningen
13 Verheijen, M. A. W. 2001, The Ursa Major Cluster of Galaxies. V. H I Rotation Curve Shapes and the TullyFisher Relations, ApJ, 563, 694   DOI   ScienceOn
14 Verheijen, M. A. W., et al. 2004, The Disk Mass project; science case for a new PMAS IFU module, AN, 325, 151
15 Rhee, M.-H., & van Albada, T. S. 1993, Mass-to-light ratio and the Tully-Fisher relation, in Bouchet, RR, & Lachieze-Rey, M., eds, Cosmic Velocity Fields (the 9th lAP Astrophysics Meeting), Editions Frontieres, Gif-surYvette, p. 89
16 Pierce, M. J., & Tully, R. B. 1992, Luminosity-line width relations and the extragalactic distance scale. I - Absolute calibration, ApJ, 387, 47   DOI
17 Rhee, M.-H. 1996, A physical basis of the Tully-Fisher relation, PhD Thesis, University of Groningen
18 Rhee, M.- H. 2004, On the Physical Basis of the Tully-Fisher Relation, JKAS, 37, 15
19 Rhee, M.-H., Peletier, R. F., & van Albada, T. S. 1995, On the turnover of the Tully-Fisher relation, ApL&C, 31, 275
20 Russell, D. G. 2004, Morphological Type Dependence in the Tully-Fisher Relationship, ApJ, 607, 241   DOI   ScienceOn
21 Rubin, V. C., Burstein, D., Ford, W. K. Jr., & Thonnard, N. 1985, Rotation velocities of 16 SA galaxies and a comparison of Sa, Sb, and SC rotation properties, ApJ, 289, 81   DOI
22 Sakai, S., et al. 2000, The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XXIV. The Calibration of Tully-Fisher Relations and the Value of the Hubble Constant, ApJ, 529, 698   DOI   ScienceOn
23 Salucci, P., Frenk, C. S., & Persic, M. 1993, A physical distance indicator for spiral galaxies and the determination of H sub 0, MNRAS, 262, 392   DOI
24 Sanders, R H., & Begeman, K. G. 1994, Modified Dynamics/ MOND / as a Dark Halo, MNRAS, 266, 360   DOI
25 Schommer, R. A., Bothun, G. D., Williams, T. B., & Mould, J. R. 1993, Measuring galaxy distances from optical rotation curves, AJ, 105, 97   DOI
26 Kent, S. M. 1986, Dark matter in spiral galaxies. I - Galaxies with optical rotation curves, AJ, 91, 1301   DOI
27 Holmberg, E. 1958, A photographic photometry of extragalactic nebulae, Medd, Lunds Astron. Obs., Ser. II, No. 136
28 Ichikawa, T., & Fukugita, M. 1992, Hubble flows in the Pisces-Perseus region from the Giovanelli-Haynes Galaxy sample, ApJ, 394, 61   DOI
29 Kannappan, S. J., Fabricant, D. G., & Franx, M. 2002, Physical Sources of Scatter in the Tully-Fisher Relation, AJ, 123, 2358   DOI   ScienceOn
30 Kester, D. J. M., Bontekoe, T. J. R., de Jonge, A. R. W., & Wesselius, P. R. 1989, IRAS Calibration, in Di Gesu, V., et al., eds, Data Analysis in Astronomy III. Plenum Press, New York, p. 141
31 Kraan-Korteweg, R. C. 1986, A catalog of 2810 nearby galaxies - The effect of the Virgocentric flow model on their observed velocities, A&AS, 66, 255
32 Lauberts, A., & Valentijn, E. A. 1989, The Surface Photometry Catalogue of the ESO-Uppsala Galaxies, European Southern Observatory, Garching
33 Lonsdale Persson, C. J., & Helou, G. 1987, On the origin of the 40-120 micron emission of galaxy disks A comparison with H-alpha fluxes, ApJ, 314, 513   DOI
34 Lu, N. Y., Hoffman, G. L., Groff, T., Roos, T., & Lamohier, C. 1993, HI 21 centimeter observations and I-band CCD surface photometry of spiral galaxies behind the Virgo Cluster and toward its antipode, ApJS, 88, 383   DOI
35 Mathewson, D. S., Ford, V. L., & Buchhorn, M. 1992, A southern sky survey of the peculiar velocities of 1355 spiral galaxies, ApJS, 81, 413   DOI
36 Fernie, J. D. 1983, Relationships between the Johnson and Kron-Cousins VRI photometric systems, PASP, 95, 782   DOI
37 Oepik, E. 1922, An estimate of the distance of the Andromeda Nebula, ApJ, 55, 406   DOI
38 Djorgovski, S., 1992, Systematics of Galaxy Properties: Hints About Their Formation, in de Carvalho, R. R., ed, Cosmology and Large-Scale Structure in the Universe. Astronomical Society of Pacific, Provo, p. 19
39 Djorgovski, S., de Carvalho, R., & Han, M.-S. 1988, The universality(?) of distance-indicator relations, in van den Bergh, S. & Pritchet, C. J., eds, The Extragalactic Distance Scale. Astronomical Society of Pacific, Provo, p. 329
40 Freeman, K. C. 1992, Dark matter in galaxies, in Thuan, T. X., et al., eds, Physics of Nearby Galaxies: Nature or Nurture? Editions Frontieres, Gif-sur-Yvette, p. 201
41 Frogel, J. A., Persson, S. E., Aaronson, M., & Matthews, K. 1978, Photometric studies of composite stellar systems. I - CO and JHK observations of E and SOgalaxies, ApJ, 220, 75   DOI
42 Fukugita, M., Okamura, S., Tarusawa, K., Rood, J., & Williams, B. A. 1991, The distance to the Coma cluster using the B-band Tully-Fisher relation, ApJ, 376, 8   DOI
43 Giraud, E. H. 1986a, A color dependence in the distance moduli derived from the Band H band Tully-Fisher relations, A&A, 155, 283
44 Giraud, E. H. 1986b, A two-color Tully-Fisher relation, A&A, 164, 17
45 Guhathakurta, P., Bernstein, G. M., Raychaudhury, S., Haynes, M., Giovanelli, R., Herter, T., & Vogt, N. 1993, The near-infrared Tully-Fisher relation - A preliminary study of the Coma and Abell 400 clusters, PASP, 105, 1022   DOI   ScienceOn
46 Bottema, R. 1993, The Stellar Kinematics of Galactic Disks, A&A, 275,16
47 Guthrie, B. N. G. 1992, Axial ratios of edge-on spirals, A&AS, 93, 255
48 Han, M. 1992, The internal extinction in spiral galaxies, ApJ, 391, 617   DOI
49 Bothun, G. D., Geller, M. J., Kurtz, M. J., Huchra, J. P., & Schild, R. E. 1992, The velocity-distance relation for galaxies on a bubble, ApJ, 395, 347   DOI
50 Bottema, R. 1997, The maximum rotation of a galactic disc, A&A, 328, 517
51 Bruzual, A. G., & Charlot, S. 1993, Spectral evolution of stellar populations using isochrone synthesis, ApJ, 405, 538   DOI   ScienceOn
52 Burstein, D. 1982, Mass and luminosity in spiral galaxies and the Tully-Fisher relation, ApJ, 253, 539   DOI
53 Burstein, D., Condon, J. J., & Yin, Q. F. 1987, The relationship between stellar population and radio continuum emission in spiral galaxies, ApJ, 315, L99   DOI
54 Byun, Y.-I. 1992, PhD Thesis, Australian National University
55 Casertano, S., & van Albada, T. S. 1990; Systematic Properties of Rotation Curves and Dark Matter, in LyndenBell, D., & Gilmore, G., eds, Baryonic Dark Matter. Kluwer, Dordrecht, p. 159
56 de Jong, R. S. 1995, PhD Thesis, University of Groningen
57 de Vaucouleurs, G., de Vaucouleurs, A., & Corwin, Jr. H. G. 1976, Second Reference Catalogue of Bright Galaxies. Univ. of Texas Press, Austin
58 Devereux, N. A., & Young, J. S. 1990, The origin of the farinfrared luminosity from spiral galaxies, ApJ, 350, L25   DOI
59 Allen, C. W. 1976, Astrophysical Quantities, Astrophysical Quantities. Athlone Press, London, p. 162
60 Devereux, N. A., & Young, J. S. 1991, The rate and efficiency of high-mass star formation along the Hubble sequence, ApJ, 371, 515   DOI
61 Aoki, T. E., Hiromoto, N., Takami, H., & Okamura, S. 1991, JHK imaging of the edge-on spiral galaxy NGC 891, PASJ, 43, 755
62 Bell, E. F., & de Jong, R. S. 2001, Stellar Mass-to-Light Ratios and the Tully-Fisher Relation, ApJ, 550, 212   DOI   ScienceOn
63 Bernstein, G. M., Guhathakurta, P., Raychaudhury, S., Giovanelli, R., Haynes, M. P., Herter, T., & Vogt, N. P. 1994, Tests of the Tully-Fisher relation. 1: Scatter in infrared magnitude versus 21 CM width, AJ, 107, 1962   DOI
64 Bershady, Iv1. A., et al. 2004, SparsePak: A Formatted Fiber Field Unit for the WlYlv Telescope Bench Spectrograph. I. Design, Construction, and Calibration, PASP, 116, 565   DOI   ScienceOn