Browse > Article
http://dx.doi.org/10.4041/kjod.2015.45.4.198

Effect of activation and preactivation on the mechanical behavior and neutral position of stainless steel and beta-titanium T-loops  

de Castro, Saul Matos (Department of Orthodontics, Faculty of Dental Medicine, University of Porto)
Moreira, Rui (Department of Mechanical Engineering, University of Aveiro)
Braga, Ana Cristina (Department of Production and Systems Engineering, School of Engineering, University of Minho)
Ferreira, Afonso Pinhao (Department of Orthodontics, Faculty of Dental Medicine, University of Porto)
Pollmann, Maria Cristina (Department of Orthodontics, Faculty of Dental Medicine, University of Porto)
Publication Information
The korean journal of orthodontics / v.45, no.4, 2015 , pp. 198-208 More about this Journal
Abstract
Objective: To quantify, for each activation, the effect of preactivations of differing distribution and intensity on the neutral position of T-loops (7-mm height), specifically the horizontal force, moment to force (M/F) ratio, and load to deflection ratio. Methods: A total 100 loops measuring $0.017{\times}0.025$ inches in cross-section were divided into two groups (n = 50 each) according to composition, either stainless steel or beta-titanium. The two groups were further divided into five subgroups, 10 loops each, corresponding to the five preactivations tested: preactivations with occlusal distribution ($0^{\circ}$, $20^{\circ}$, and $40^{\circ}$), gingival distribution ($20^{\circ}$), and occlusal-gingival distribution ($40^{\circ}$). The loops were subjected to a total activation of 6-mm with 0.5-mm iterations. Statistical analysis was performed using comprised ANOVA and Bonferoni multiple comparison tests, with a significance level of 5%. Results: The location and intensity of preactivation influenced the force intensity. For the M/F ratio, the highest value achieved without preactivation was lower than the height of the loop. Without preactivation, the M/F ratio increased with activation, while the opposite effect was observed with preactivation. The increase in the M/F ratio was greater when the preactivation distribution was partially or fully gingival. Conclusions: Depending on the preactivation distribution, displacement of uprights is higher or lower than the activation, which is a factor to consider in clinical practice.
Keywords
Neutral position; Preactivation; T-loop;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Burstone CJ, Koenig HA. Optimizing anterior and canine retraction. Am J Orthod 1976;70:1-19.   DOI
2 Rose D, Quick A, Swain M, Herbison P. Moment-toforce characteristics of preactivated nickel-titanium and titanium-molybdenum alloy symmetrical T-loops. Am J Orthod Dentofacial Orthop 2009;135: 757-63.   DOI
3 Weinstein S, Haack DC. Theoretical mechanics and practical orthodontics. Angle Orthod 1959;29:177-81.
4 Vaden JL, Dale JG, Klontz HA. Aparato arco de canto de Tweed-Merrifield: filosofia, diagnostico y tratamiento. In: Restrepo GAU, editor. Ortodoncia principios generales y tecnicas. 3rd ed. Buenos Aires: Editorial Medica Panamericana S.A; 2003. p. 625-82.
5 Burstone CJ. The mechanics of the segmented arch techniques. Angle Orthod 1966;36:99-120.
6 Smith RJ, Burstone CJ. Mechanics of tooth movement. Am J Orthod 1984;85:294-307.   DOI
7 Siatkowski RE. Force system analysis of V-bend sliding mechanics. J Clin Orthod 1994;28:539-46.
8 Braun S, Garcia JL. The Gable bend revisited. Am J Orthod Dentofacial Orthop 2002;122:523-7.   DOI
9 Siatkowski RE. Continuous arch wire closing loop design, optimization, and verification. Part II. Am J Orthod Dentofacial Orthop 1997;112:487-95.   DOI
10 Techalertpaisarn P, Versluis A. Mechanical properties of Opus closing loops, L-loops, and T-loops investigated with finite element analysis. Am J Orthod Dentofacial Orthop 2013;143:675-83.   DOI
11 Chen J, Markham DL, Katona TR. Effects of T-loop geometry on its forces and moments. Angle Orthod 2000;70:48-51.
12 Kuhlberg AJ, Burstone CJ. T-loop position and anchorage control. Am J Orthod Dentofacial Orthop 1997;112:12-8.   DOI
13 Shimizu RH, Sakima T, Pinto AS, Shimizu IA. Desempenho biomecanico da alca "T", construida com fio de aco inoxidavel, durante o fechamento de espacos no tratamento ortodontico. R Dental Press Ortodon Ortop Facial 2002;7:49-61.
14 Maia LG, de Moraes Maia ML, da Costa Monini A, Vianna AP, Gandini LG Jr. Photoelastic analysis of forces generated by T-loop springs made with stainless steel or titanium-molybdenum alloy. Am J Orthod Dentofacial Orthop 2011;140:e123-8.   DOI
15 Manhartsberger C, Morton JY, Burstone CJ. Space closure in adult patients using the segmented arch technique. Angle Orthod 1989;59:205-10.
16 Marcotte MR. Mecanica em Ortodontia. In: Marcotte MR, editor. Biomecanica em ortodontia. 2nd ed. Sao Paulo: Livraria Santos Editora; 2003. p. 1-21.
17 Souza RS, Pinto AS, Shimizu RH, Sakima MT, Gandini LG. Avaliacao do sistema de forcas gerado pela alca T de retracao pre-ativada segundo o padrao UNESP-Araraquara. R Dental Press Ortodon Ortop Facial 2003;8:113-22.
18 Siatkowski RE. Continuous arch wire closing loop design, optimization, and verification. Part I. Am J Orthod Dentofacial Orthop 1997;112:393-402.   DOI
19 Thiesen G, Shimizu RH, do Valle CV, do Valle-Corotti KM, Pereira JR, Conti PC. Determination of the force systems produced by different configurations of tear drop orthodontic loops. Dental Press J Orthod 2013;18:19.e1-18.   DOI
20 Braun S, Sjursen RC Jr, Legan HL. On the management of extraction sites. Am J Orthod Dentofacial Orthop 1997;112:645-55.   DOI
21 Halazonetis DJ. Understanding orthodontic loop preactivation. Am J Orthod Dentofacial Orthop 1998;113:237-41.   DOI
22 Viecilli RF. Self-corrective T-loop design for differential space closure. Am J Orthod Dentofacial Orthop 2006;129:48-53.   DOI
23 Ingram SB Jr, Gipe DP, Smith RJ. Comparative range of orthodontic wires. Am J Orthod Dentofacial Orthop 1986;90:296-307.   DOI
24 Caldas SG, Martins RP, Galvao MR, Vieira CI, Martins LP. Force system evaluation of symmetrical betatitanium T-loop springs preactivated by curvature and concentrated bends. Am J Orthod Dentofacial Orthop 2011;140:e53-8.   DOI
25 Ferreira Mdo A, de Oliveira FT, Ignacio SA, Borges PC. Experimental force definition system for a new orthodontic retraction spring. Angle Orthod 2005; 75:368-77.
26 Burstone CJ, Koenig HA. Force systems from an ideal arch. Am J Orthod 1974;65:270-89.   DOI
27 Odegaard J, Meling T, Meling E. The effects of loops on the torsional stiffnesses of rectangular wires: an in vitro study. Am J Orthod Dentofacial Orthop 1996;109:496-505.   DOI