Browse > Article
http://dx.doi.org/10.9714/psac.2017.19.1.042

Effects of heat treatment temperature on the formation of MgB2 bulk superconductors prepared using MgB4 and Mg powder  

Kim, S.H. (Korea Atomic Energy Research Institute)
Kang, W.N. (Sungkyunkwan University)
Lee, Y.J. (Korea Atomic Energy Research Institute)
Jun, B.H. (Korea Atomic Energy Research Institute)
Kim, C.J. (Korea Atomic Energy Research Institute)
Publication Information
Progress in Superconductivity and Cryogenics / v.19, no.1, 2017 , pp. 42-46 More about this Journal
Abstract
The effects of the heat treatment temperature ($600^{\circ}C-1050^{\circ}C$) on the formation of $MgB_2$ and the superconducting properties have been examined. The self-synthesized $MgB_4$ and commercial Mg powders were used as raw materials for the formation of $MgB_2$. The superconducting critical temperatures ($T_cs$) of $MgB_2$ bulk superconductors prepared at $600^{\circ}C-850^{\circ}C$ were as high as 37-38 K regardless of the heat treatment temperature. However, because $MgB_4$ is more stable than $MgB_2$ at above $850^{\circ}C$, no superconducting signals were detected in the susceptibility-temperature curves of the samples prepared above $850^{\circ}C$. As for the critical current density ($J_c$), the sample heat-treated at a low temperature ($600^{\circ}C$) for a prolonged period (40 h) showed a Jc higher than those prepared at $650^{\circ}C-850^{\circ}C$ for a short period (1 h). The FWHM (full width at half maximum) result showed that the grain size of $MgB_2$ of the $600^{\circ}C$ sample was smaller than that of the other samples. The high $J_c$ of the $600^{\circ}C$sample is attributed to the presence of large numbers of grain boundaries, which can act as flux pinning centers of $MgB_2$.
Keywords
$MgB_4$; $MgB_2$; Critical current density ($J_c$); Powder reaction; Phase formation; Heat treatment temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. H. Kim, S. X. Dou, J. L. Wang, D. Q. Shi, X. Xu, M. S. A. Hossain, W. K. Yeoh, S. Choi and T. Kiyoshi, "The effects of sintering temperature on superconductivity in $MgB_2$/Fe wires," Supercond. Sci. Technol., vol. 20, pp. 448-451, 2007.   DOI
2 A. Yamamoto, J. I. Shimoyama, S. Ueda, Y. Katsura, S. Horii and K. Kishio, "Improved critical current properties observed in $MgB_2$ bulk synthesized by low-temperature solid-state reaction," Supercond. Sci. Tehchnol., vol. 18, pp. 116-121, 2004.
3 B.-H. Jun, N.-K. Kim, K.S. Tan and C.-J. Kim, "Enhanced critical current properties of in situ processed $MgB_2$ wires using milled boron powder and low temperature solid-state reaction," J. Alloys Compd., vol. 492, pp. 446-451, 2010.   DOI
4 A. Serquis, Y. T. Zhu, E. J. Peterson, J. Y. Coulter, D. E. Peterson, and F. M. Mueller, "Effect of lattice strain and defects on the superconductivity of $MgB_2$," Amer. Inst. phys. vol. 79, pp. 4399-4401, 2001.
5 C. J. Kim, J. H. Yi, B. H. Jun, B. Y. You, S. D. Park and K. N. Choo, "Reaction-induced pore formation and superconductivity in in situ processed $MgB_2$ superconductors," Physica C., vol. 502, pp. 4-9, 2014.   DOI
6 K. L. Tan, K. P. Lim, A. S. Halim and S. K. Chen, "Enhanced critical current density in $MgB_2$ prepared by reaction of $MgB_4$ and Mg," Phys. Status Solidi A, vol. 210, No. 3, pp. 616-622, 2013.   DOI
7 D Nardelli, D Matera, M Vignolo, G Bovone, A. Palenzona, A. S. Siri and G. Grasso, "Large critical current density in $MgB_2$ wire using $MgB_4$ as precursor," Supercond. Sci. Technol., vol. 26, pp. 075010, 2013.   DOI
8 Zongqing Ma, Yongchang Liu, Liming Yu and Qian Zhao, "The accelerated formation of $MgB_2$ phase with high critical current density by Cu and SiC multidoping during the low-temperature sintering process," J. Appl. Phys., vol. 104, pp. 113917, 2008.   DOI
9 J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, "Superconductivity at 39 K in magnesium diboride," Nature, vol. 410, pp. 63-64, 2001.   DOI
10 Y. Eltsev, S. Lee, K. Nakao, N. Chikumoto, S. Tajima, N. Koshizuka and M. Murakami, "Anisotropic superconducting properties of $MgB_2$ single crystals probed by in-plane electrical transport measurements," Phys. Rev., vol. 65, pp. 140501, 2002.   DOI
11 K. S. Tan, B. H. Jun and C. J. Kim, "Superconducting properties of a $MgB_2$ bulk formed by using a $MgB_4$ + Mg Mixture," J. Korean Phys. Soc., vol. 54, No. 4, pp. 1626-1629, 2009.   DOI
12 A. Ito, A. Yamamoto, J. Shimoyama, H. Ogino and K. Kishio, "Synthesis of denser in situ $MgB_2$ bulks using $MgB_4$ precursor," IEEE Trans. Appl. Supercond., vol. 23, pp. 7101005, 2013.   DOI
13 K. L. Tan, K. Y. Tan, K. P. Lim, S. A. Halim and S. K. Chen, "Synthesis of $MgB_2$ from $MgB_4$ through combinatorial solid state reaction routes," Solid state. Sci. Tech., vol. 19, pp. 15-19, 2011.
14 J. Ishiwata, M. Muralidhar, K. Inoue and M. Murakami, "Effect of $MgB_4$ addition on the superconducting properties of polycrystalline $MgB_2$," Physics Procedia., vol. 65, pp. 69-72, 2015.   DOI
15 C. P. Bean, "Magnetization of high-field superconductors," Rev. Mod. Phys., vol. 36, pp. 31-39, 1964.   DOI
16 P. Scherrer, "Bestimmung der grosse und der inneren struktur von kolloidteilchen mittels rontgenstrahlen," Nachr. Ges. Wiss. Gottingen, vol. 26, pp. 98-100, 1918.
17 B. A. Glowacki, M. Majoros, M. Vickers, J. E. Evetts, Y. Shi and I. Mcdougall, "Superconductivity of powder-in-tube $MgB_2$ wires," Supercond. Sci. Technol., vol. 14, pp. 193-199, 2001.   DOI
18 V. Grinenko, E. P. Krasnoperova , V. A. Stoliarova, A. A. Bush and B. P. Mikhajlov, "Superconductivity in porous $MgB_2$," Physics C, vol. 43, pp. 492-495, 2006.
19 A. V. Pan, S. Zhou, H. Liu and S. Dou, "Properties of superconducting $MgB_2$ wires: in situ versus ex situ reaction technique," Supercond. Sci. Technol., vol. 16, pp. 639-644, 2003.   DOI
20 C. U. Jung, M. S. Park, M. S. Kim, J. H. Choi, W. N. Kang, H. P. Kim and S. I. Lee, "High-pressure sintering of highly dense $MgB_2$ and its unique pinning properties," Curr. Appl. Phys., vol. 1, pp. 327-331, 2001.   DOI
21 A. Tampieri, G. Celotti, S. Sprio, R. Caciuffo and D. Rinaldi, "Study of the sintering behavior of $MgB_2$ superconductor during hot-pressing," Physica C, vol. 400, pp. 97-104, 2004.   DOI
22 E. Martinez, L. A. Angurel and R. Navarro, "Study of Ag and Cu/$MgB_2$ powder-in-tube composite wires fabricated by In situ reaction at low temperature," Supercond. Sci. Technol., vol. 15, pp. 1043-1047, 2002.   DOI
23 B. H. Jun and C. J. Kim, "The effect of heat-treatment temperature on the superconducting properties of malic acid-doped $MgB_2$/Fe wire," Supercond. Sci. Technol., vol. 20, pp. 980-985, 2007.   DOI
24 J. H. Yi , K. T. Kim, B. H. Jun, J. M. Sohn, B. G. Kim , J. Joo and C. J. Kim, "Pore formation in in situ processed $MgB_2$ superconductors," Physica C, vol. 469, pp. 1192-1195, 2009.   DOI