Browse > Article

Correlation Effect on the Electronic Structures of {Li, Na}FeAs  

Ji, Hyo-Seok (Department of Chemistry, Pohang University of Science and Technology)
Lee, Geun-Sik (Department of Chemistry, Pohang University of Science and Technology)
Shim, Ji-Hoon (Department of Chemistry, Pohang University of Science and Technology)
Publication Information
Abstract
Based on fully self-consistent dynamical mean field theory (DMFT) method, we investigate electronic structure and Fermi surface nesting property of LiFeAs and NaFeAs, focusing on the correlation effect of iron 3d orbital. For LiFeAs, good nesting property by density functional theory (DFT) method is much suppressed by DFT+DMFT method due to the orbital-dependent renormalization magnitude. NaFeAs shows a similar behavior, but a better nesting is obtained than LiFeAs from DFT+DMFT Fermi surfaces. Our result is consistent with the observed superconducting (spin density wave) ground state of LiFeAs (NaFeAs).
Keywords
iron pnictides; superconductivity; fermi surface nesting; dynamical mean field theory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Haule, C.-H. Yee, K. Kim, Phys. Rev. B. 81, 195107 (2010).
2 P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, ISBN 3-9501031-1-2 (2001).
3 J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
4 P. Werner, C. Comanac, L. DeMedici, M. Troyer, A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006).
5 K. Haule, Phys. Rev. B 75, 155113 (2007).
6 A. Kutepov et al., Phys. Rev. B 82, 045105 (2010).
7 S. Li et al., Phys. Rev. B 80, 020504(R) (2009).
8 Z. P. Yin, K Haule, G. Kotliar, Nat. Mater. 10, 932 (2011).
9 K. Hashimoto et al., Phys. Rev. Lett. 108, 047003 (2012).
10 S. V. Borisenko et al., Phys. Rev. Lett. 105, 067002 (2010).
11 I. Mazin et al., Phys. Rev. Lett. 101, 057003 (2008).
12 N. Qureshi et al., Phys. Rev. Lett. 108, 117001 (2012).
13 A. E. Taylor et al., Phys. Rev. B 83, 220514 (2011).
14 C. Putzke et al., Phys. Rev. Lett. 108, 047002 (2012).
15 P. M. R. Brydon et al., Phys. Rev. B 83, 060501 (2011).
16 L. Craco et al., Phys. Rev. B 78, 134511 (2008).
17 Z. P. Yin et al., Nature Phys. 7, 294 (2011).
18 H. Lee et al., Phys. Rev. B 81, 220506 (2010).
19 P. Hansmann et al., Phys. Rev. Lett. 104, 197002 (2010).
20 H. S. Ji, G. Lee, J. H. Shim, Phys. Rev. B 84, 054542 (2011).
21 Z. P. Yin et al., Nature Mater. 10, 932 (2011).
22 P. Goswami et al., Phys. Rev. B 84, 155108 (2011).
23 R. Applegate et al., Phys. Rev. B 81, 024505 (2010).
24 A. L. Wysocki et al., Nature Phys. 7, 485 (2011).
25 J. H. Tapp et al., Phys. Rev. B 78, 060505(R) (2008).
26 G. F. Chen, W. Z. Hu, J. L. Lua, N. L. Wang, Phys. Rev. Lett. 102, 227004 (2009).
27 G. Lee et al., arxiv:1205.6526
28 R. A. Jishi, H.M. Alyahyaei, Adv. Cond. Mat. Phys. 2010, 804343 (2010).
29 G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).