Browse > Article

Correlation Effects in Superconducting $Sr_2VO_3FeAs$  

Lee, K.W. (Department of Display and Semiconductor Physics, Korea University)
Publication Information
Abstract
In the superconducting $Sr_2VO_3FeAs$, containing bimetallic layers, with maximum $T_c{\approx}\;46\;K$ correlation effects on V ions have been investigated using LDA+U method. Within the local density approximation (LDA) this system has the one-third filled $t_{2g}$ manifold of V, decomposed into $d_{xy}$ of bandwidth W=2 eV and nearly degenerate $d_{zx}d_{yz}$ of W=1 eV. Consideration of correlation effects leads to a metal-insulator transition on V ions $t^{2\uparrow}_{2g}\;{\rightarrow}\;d^{1\uparrow}_{xz}\;d^{1\uparrow}_{yz}$ at the critical on-site Coulomb repulsion $U_c$= 3.5 eV. At U=4 eV, the electronic structure, in which V ions are insulating, leads to several van Hove singularities near $E_F$ and similar Fermiology with other pnictides. Applying U to V ions results in increasing Fe moment as well as V moment, indicating somewhat hybridization between Fe and V ions even though this system is strongly 2-dimesional. Our results show possible importance of correlation effects on this system.
Keywords
Fe-pnictides; Correlation effects; $Sr_2VO_3FeAs$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. R. Shein and A. L. Ivanovskii, J. Supercond. Nov. Magn. 22, 613 (2009).   DOI   ScienceOn
2 K.-W. Lee and W. E. Pickett, Europhys. Lett. 89, 57008 (2010).   DOI   ScienceOn
3 M. Tegel et al., Z. Anorg. Allg. Chem. 635, 2242 (2009).   DOI   ScienceOn
4 H. Ogino, Y. Shimizu, K. Ushiyama, N. Kawaguchi, K. Kishio, and J. Shimoyama, Appl. Phys. Express 3, 063103 (2010).   DOI   ScienceOn
5 K. Bouadim, G. G. Batrouni, and R. T. Scalettar, Phys. Rev. Lett. 102, 226402 (2009).   DOI   ScienceOn
6 V. Pardo and W. E. Pickett, Phys. Rev. Lett. 102, 166803 (2009).   DOI   ScienceOn
7 S. Biermann, A. Poteryaev, A. I. Lichtenstein, and A. Georges, Phys. Rev. Lett. 94, 026404 (2005).   DOI   ScienceOn
8 K. Koepernik and H. Eschrig, Phys. Rev. B 59, 1743 (1999).   DOI   ScienceOn
9 M. Tegel et al., arXiv:1008.2687 (unpublished).   DOI
10 G. Gao et al., arXiv:1007.3980 (unpublished).   DOI   ScienceOn
11 M. T. Czyzyk and G. A. Sawatzky, Phys. Rev. B 49, 14211 (1994).   DOI   ScienceOn
12 H.-H. Wen, X. Zhu, F. Han, G. Mu, P. Cheng, B. Shen, and B. Zeng, Physica C (in press).
13 G. Wang, M. Zhang, L. Zheng, and Z. Yang, Phys. Rev. B 80, 184501 (2009).   DOI   ScienceOn
14 V. I. Anisimov et al., Phys. Rev. B 48, 16929 (1993).   DOI   ScienceOn
15 X. Zhu, F. Han, G. Mu, P. Cheng, B. Shen, B. Zeng, and H.-H. Wen, Phys. Rev. B 79, 220512(R) (2009).   DOI
16 T. Qian et al., arXiv:1008.4905 (unpublished).   DOI
17 Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 139, 3296 (2008).
18 For a recent review, see J. Paglione and R. L. Greene, Nature Phys. 6, 645 (2010).   DOI   ScienceOn
19 S. V. Borisenko et al., Phys. Rev. Lett. 105, 067002 (2010).   DOI   ScienceOn
20 H. Ogino et al., Supercond. Sci. Techol. 22, 075008 (2009).   DOI   ScienceOn
21 S. Sato et al., Supercond. Sci. Technol. 23, 045001 (2010).   DOI   ScienceOn
22 I. I. Mazin, Phys. Rev. B 81, 020507(R) (2010).   DOI
23 Y. L. Xie et al., Europhys. Lett. 86, 57007 (2009).   DOI   ScienceOn
24 H. Kotegawa et al., J. Phys. Soc. Jpn. 78, 123707 (2009).   DOI   ScienceOn
25 F. Han, X. Zhu, G. Mu, P. Cheng, B. Shen, B. Zeng, and H.-H. Wen, Sci. China Ser. G 53, 1202 (2010).