Browse > Article
http://dx.doi.org/10.5395/rde.2020.45.e2

Cytocompatibility and cell proliferation evaluation of calcium phosphate-based root canal sealers  

Mestieri, Leticia Boldrin (Departament of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul)
Zaccara, Ivana Maria (Departament of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul)
Pinheiro, Lucas Siqueira (Departament of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul)
Barletta, Fernando Branco (School of Dentistry, Lutheran University of Brazil - ULBRA)
Kopper, Patricia Maria Polli (Departament of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul)
Grecca, Fabiana Soares (Departament of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul)
Publication Information
Restorative Dentistry and Endodontics / v.45, no.1, 2020 , pp. 2.1-2.7 More about this Journal
Abstract
Objectives: This study aimed to evaluate the cell viability and migration of Endosequence Bioceramic Root Canal Sealer (BC Sealer) compared to MTA Fillapex and AH Plus. Materials and Methods: BC Sealer, MTA Fillapex, and AH Plus were placed in contact with culture medium to obtain sealers extracts in dilution 1:1, 1:2 and 1:4. 3T3 cells were plated and exposed to the extracts. Cell viability and migration were assessed by 3-(4,5-dimethylthiazoyl)-2,5-diphenyl-tetrazolium bromide (MTT) and Scratch assay, respectively. Data were analyzed by Kruskal-Wallis and Dunn's test (p < 0.05). Results: The MTT assay revealed greater cytotoxicity for AH Plus and MTA Fillapex at 1:1 dilution when compared to control (p < 0.05). At 1:2 and 1:4 dilutions, all sealers were similar to control (p > 0.05) and MTA Fillapex was more cytotoxic than BC Sealer (p < 0.05). Scratch assay demonstrated the continuous closure of the wound according to time. At 30 hours, the control group presented closure of the wound (p < 0.05). At 36 hours, only BC Sealer presented the closure when compared to AH Plus and MTA Fillapex (p < 0.05). At 42 hours, AH Plus and MTA Fillapex showed a wound healing (p > 0.05). Conclusions: All tested sealers demonstrated cell viability highlighting BC Sealer, which showed increased cell migration capacity suggesting that this sealer may achieve better tissue repair when compared to other tested sealers.
Keywords
Root canal; Cell migration; Fibroblast; Endodontics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Camps J, About I. Cytotoxicity testing of endodontic sealers: a new method. J Endod 2003;29:583-586.   DOI
2 Tanomaru-Filho M, Andrade AS, Rodrigues EM, Viola KS, Faria G, Camilleri J, Guerreiro-Tanomaru JM. Biocompatibility and mineralized nodule formation of Neo MTA Plus and an experimental tricalcium silicate cement containing tantalum oxide. Int Endod J 2017;50(Supplement 2):e31-e39.   DOI
3 Borges RP, Sousa-Neto MD, Versiani MA, Rached-Junior FA, De-Deus G, Miranda CE, Pecora JD. Changes in the surface of four calcium silicate-containing endodontic materials and an epoxy resin-based sealer after a solubility test. Int Endod J 2012;45:419-428.   DOI
4 Mahdi JG, Alkarrawi MA, Mahdi AJ, Bowen ID, Humam D. Calcium salicylate-mediated apoptosis in human HT-1080 fibrosarcoma cells. Cell Prolif 2006;39:249-260.   DOI
5 Silva Almeida LH, Moraes RR, Morgental RD, Pappen FG. Are premixed calcium silicate-based endodontic sealers comparable to conventional materials? A systematic review of in vitro studies. J Endod 2017;43:527-535.   DOI
6 ISO-Standards ISO 10993 Biological evaluation of medical devices - part 5: tests for in vitro cytotoxicity. Geneva: International Organization for Standardization; 2009.
7 Sarkar NK, Caicedo R, Ritwik P, Moiseyeva R, Kawashima I. Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod 2005;31:97-100.   DOI
8 Ranjkesh B, Chevallier J, Salehi H, Cuisinier F, Isidor F, Lovschall H. Apatite precipitation on a novel fast-setting calcium silicate cement containing fluoride. Acta Biomater Odontol Scand 2016;2:68-78.   DOI
9 Parirokh M, Torabinejad M, Dummer PM. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part I: vital pulp therapy. Int Endod J 2018;51:177-205.   DOI
10 Silva EJ, Carvalho NK, Ronconi CT, De-Deus G, Zuolo ML, Zaia AA. Cytotoxicity profile of endodontic sealers provided by 3D cell culture experimental model. Braz Dent J 2016;27:652-656.   DOI
11 Rodriguez-Lozano FJ, Garcia-Bernal D, Onate-Sanchez RE, Ortolani-Seltenerich PS, Forner L, Moraleda JM. Evaluation of cytocompatibility of calcium silicate-based endodontic sealers and their effects on the biological responses of mesenchymal dental stem cells. Int Endod J 2017;50:67-76.   DOI
12 Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2007;2:329-333.   DOI
13 Chen I, Salhab I, Setzer FC, Kim S, Nah HD. A new calcium silicate-based bioceramic material promotes human osteo and odontogenic stem cell proliferation and survival via the extracellular signal-regulated kinase signaling pathway. J Endod 2016;42:480-486.   DOI
14 Yang Q, Lu D. Premix biological hydraulic cement paste composition and using the same. United States Patent Application 2008029909. 2008 Dec 4.
15 Loushine BA, Bryan TE, Looney SW, Gillen BM, Loushine RJ, Weller RN, Pashley DH, Tay FR. Setting properties and cytotoxicity evaluation of a premixed bioceramic root canal sealer. J Endod 2011;37:673-677.   DOI
16 Victoria-Escandell A, Ibanez-Cabellos JS, de Cutanda SB, Berenguer-Pascual E, Beltran-Garcia J, Garcia-Lopez E, Pallardo FV, Garcia-Gimenez JL, Pallares-Sabater A, Zarzosa-Lopez I, Monterde M. Cellular responses in human dental pulp stem cells treated with three endodontic materials. Stem Cells Int 2017;2017:8920356.   DOI
17 Sjogren U, Hagglund B, Sundqvist G, Wing K. Factors affecting the long-term results of endodontic treatment. J Endod 1990;16:498-504.   DOI
18 Schaeffer MA, White RR, Walton RE. Determining the optimal obturation length: a meta-analysis of literature. J Endod 2005;31:271-274.   DOI
19 Giacomino CM, Wealleans JA, Kuhn N, Diogenes A. Comparative biocompatibility and osteogenic potential of two bioceramic sealers. J Endod 2019;45:51-56.
20 Collado-Gonzalez M, Tomas-Catala CJ, Onate-Sanchez RE, Moraleda JM, Rodriguez-Lozano FJ. Cytotoxicity of Guttaflow Bioseal, Guttaflow 2, MTA Fillapex, and AH Plus on human periodontal ligament stem cells. J Endod 2017;43:816-822.   DOI
21 Zhou HM, Shen Y, Zheng W, Li L, Zheng YF, Haapasalo M. Physical properties of 5 root canal sealers. J Endod 2013;39:1281-1286.   DOI
22 Pinheiro LS, Iglesias JE, Boijink D, Mestieri LB, Poli Kopper PM, Figueiredo JA, Grecca FS. Cell viability and tissue reaction of NeoMTA Plus: an in vitro and in vivo study. J Endod 2018;44:1140-1145.   DOI
23 Almeida LH, Gomes AP, Gastmann AH, Pola NM, Moraes RR, Morgental RD, Cava SS, Felix AO, Pappen FG. Bone tissue response to an MTA-based endodontic sealer, and the effect of the addition of calcium aluminate and silver particles. Int Endod J 2019;52:1446-1456.   DOI
24 Khan S, Kaleem M, Fareed MA, Habib A, Iqbal K, Aslam A, Ud Din S. Chemical and morphological characteristics of mineral trioxide aggregate and Portland cements. Dent Mater J 2016;35:112-117.   DOI