Browse > Article
http://dx.doi.org/10.5395/rde.2019.44.e19

Cyclic fatigue, bending resistance, and surface roughness of ProTaper Gold and EdgeEvolve files in canals with single- and double-curvature  

Khalil, Wafaa A. (Department of Endodontics, Faculty of Dentistry, King Abdulaziz University)
Natto, Zuhair S. (Department of Dental Public Health, Faculty of Dentistry, King Abdulaziz University)
Publication Information
Restorative Dentistry and Endodontics / v.44, no.2, 2019 , pp. 19.1-19.9 More about this Journal
Abstract
Objectives: The purpose of this study was to evaluate the cyclic fatigue, bending resistance, and surface roughness of EdgeEvolve (EdgeEndo) and ProTaper Gold (Dentsply Tulsa Dental Specialties) nickel-titanium (NiTi) rotary files. Materials and Methods: The instruments (n = 15/each) were tested for cyclic fatigue in single- ($60^{\circ}$ curvature, 5-mm radius) and double-curved (coronal curvature $60^{\circ}$, 5-mm radius, and apical curvature of $30^{\circ}$ and 2-mm radius) artificial canals. The number of cycles to fracture was calculated. The bending resistance of both files were tested using a universal testing machine where the files were bent until reach $45^{\circ}$. Scanning electron microscopy and x-ray energy-dispersive spectrometric analysis were used for imaging the fractured segments, while the atomic force microscope was used to quantify the surface roughness average (Ra). Results: EdgeEvolve files exhibited higher cyclic fatigue resistance than ProTaper Gold files in single- and double-curved canals (p < 0.05) and both files were more resistant to cyclic fatigue in single-curved canals than double-curved canals (p < 0.05). EdgeEvolve files exhibited significantly more flexibility than did ProTaper Gold files (p < 0.05). Both files had approximately similar Ni and Ti contents (p > 0.05). EdgeEvolve files showed significantly lower Ra values than ProTaper Gold files (p < 0.05). Conclusions: Within the limitation of this study, EdgeEvolve files exhibited significantly higher cyclic fatigue resistance than ProTaper Gold files in both single- and double-curved canals.
Keywords
Cyclic fatigue test; EdgeEvolve; Nickel titanium rotary instrument; ProTaper Gold; Scanning electron microscopy; Universal testing machine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cheung GS, Liu CS. A retrospective study of endodontic treatment outcome between nickel-titanium rotary and stainless steel hand filing techniques. J Endod 2009;35:938-943.   DOI
2 Sattapan B, Nervo GJ, Palamara JE, Messer HH. Defects in rotary nickel-titanium files after clinical use. J Endod 2000;26:161-165.   DOI
3 Parashos P, Gordon I, Messer HH. Factors influencing defects of rotary nickel-titanium endodontic instruments after clinical use. J Endod 2004;30:722-725.   DOI
4 Shen Y, Qian W, Abtin H, Gao Y, Haapasalo M. Fatigue testing of controlled memory wire nickel-titanium rotary instruments. J Endod 2011;37:997-1001.   DOI
5 Al-Sudani D, Grande NM, Plotino G, Pompa G, Di Carlo S, Testarelli L, Gambarini G. Cyclic fatigue of nickel-titanium rotary instruments in a double (S-shaped) simulated curvature. J Endod 2012;38:987-989.   DOI
6 Topcuoglu HS, Topcuoglu G, Akti A, Duzgun S. In vitro comparison of cyclic fatigue resistance of ProTaper Next, HyFlex CM, OneShape, and ProTaper Universal instruments in a canal with a double curvature. J Endod 2016;42:969-971.   DOI
7 Duke F, Shen Y, Zhou H, Ruse ND, Wang ZJ, Hieawy A, Haapasalo M. Cyclic fatigue of ProFile Vortex and Vortex Blue nickel-titanium files in single and double curvatures. J Endod 2015;41:1686-1690.   DOI
8 de Arruda Santos L, de Azevedo Bahia MG, de Las Casas EB, Buono VT. Comparison of the mechanical behavior between controlled memory and superelastic nickel-titanium files via finite element analysis. J Endod 2013;39:1444-1447.   DOI
9 Hieawy A, Haapasalo M, Zhou H, Wang ZJ, Shen Y. Phase transformation behavior and resistance to bending and cyclic fatigue of ProTaper Gold and ProTaper Universal instruments. J Endod 2015;41:1134-1138.   DOI
10 Capar ID, Kaval ME, Ertas H, Sen BH. Comparison of the cyclic fatigue resistance of 5 different rotary pathfinding instruments made of conventional nickel-titanium wire, M-wire, and controlled memory wire. J Endod 2015;41:535-538.   DOI
11 Uygun AD, Kol E, Topcu MK, Seckin F, Ersoy I, Tanriver M. Variations in cyclic fatigue resistance among ProTaper Gold, ProTaper Next and ProTaper Universal instruments at different levels. Int Endod J 2016;49:494-499.   DOI
12 Plotino G, Grande NM, Cordaro M, Testarelli L, Gambarini G. Measurement of the trajectory of different NiTi rotary instruments in an artificial canal specifically designed for cyclic fatigue tests. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108:e152-e156.   DOI
13 Silva EJ, Rodrigues C, Vieira VT, Belladonna FG, De-Deus G, Lopes HP. Bending resistance and cyclic fatigue of a new heat-treated reciprocating instrument. Scanning 2016;38:837-841.   DOI
14 Yahata Y, Yoneyama T, Hayashi Y, Ebihara A, Doi H, Hanawa T, Suda H. Effect of heat treatment on transformation temperatures and bending properties of nickel-titanium endodontic instruments. Int Endod J 2009;42:621-626.   DOI
15 De-Deus G, Silva EJ, Vieira VT, Belladonna FG, Elias CN, Plotino G, Grande NM. Blue thermomechanical treatment optimizes fatigue resistance and flexibility of the Reciproc files. J Endod 2017;43:462-466.   DOI
16 Cai JJ, Tang XN, Ge JY. Effect of irrigation on surface roughness and fatigue resistance of controlled memory wire nickel-titanium instruments. Int Endod J 2017;50:718-724.   DOI
17 Lin LM, Rosenberg PA, Lin J. Do procedural errors cause endodontic treatment failure? J Am Dent Assoc 2005;136:187-193.   DOI
18 Shen Y, Hieawy A, Huang X, Wang ZJ, Maezono H, Haapasalo M. Fatigue resistance of a 3-dimensional conforming nickel-titanium rotary instrument in double curvatures. J Endod 2016;42:961-964.   DOI
19 Zhang Y, Jiang S, Zhao Y, Tang M. Influence of cooling rate on phase transformation and microstructure of Ti-50.9%Ni shape memory alloy. T Nonferr Metal Soc J 2012;22:2685-2690.   DOI
20 Braga LC, Faria Silva AC, Buono VT, de Azevedo Bahia MG. Impact of heat treatments on the fatigue resistance of different rotary nickel-titanium instruments. J Endod 2014;40:1494-1497.   DOI
21 Gu Y, Kum KY, Perinpanayagam H, Kim C, Kum DJ, Lim SM, Chang SW, Baek SH, Zhu Q, Yoo YJ. Various heat-treated nickel-titanium rotary instruments evaluated in S-shaped simulated resin canals. J Dent Sci 2017;12:14-20.   DOI
22 Lopes HP, Elias CN, Vieira MV, Vieira VT, de Souza LC, Dos Santos AL. Influence of surface roughness on the fatigue life of nickel-titanium rotary endodontic instruments. J Endod 2016;42:965-968.   DOI
23 Schafer E, Dzepina A, Danesh G. Bending properties of rotary nickel-titanium instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;96:757-763.   DOI
24 Kim BH, Ha JH, Lee WC, Kwak SW, Kim HC. Effect from surface treatment of nickel-titanium rotary files on the fracture resistance. Scanning 2015;37:82-87.   DOI
25 Grande NM, Plotino G, Pecci R, Bedini R, Malagnino VA, Somma F. Cyclic fatigue resistance and three-dimensional analysis of instruments from two nickel-titanium rotary systems. Int Endod J 2006;39:755-763.   DOI
26 Elnaghy AM, Elsaka SE. Mechanical properties of ProTaper Gold nickel-titanium rotary instruments. Int Endod J 2016;49:1073-1078.   DOI
27 Kaval ME, Capar ID, Ertas H. Evaluation of the cyclic fatigue and torsional resistance of novel nickel-titanium rotary files with various alloy properties. J Endod 2016;42:1840-1843.   DOI
28 Zhang YQ, Jiang SY, Zhao YN, Tang M. Influence of cooling rate on phase transformation and microstructure of Ti-50.9%Ni shape memory alloy. Trans Nonferrous Met Soc China 2012;22:2685-2690.   DOI