Browse > Article
http://dx.doi.org/10.4047/jap.2013.5.2.161

Effects of the sintering conditions of dental zirconia ceramics on the grain size and translucency  

Kim, Mi-Jin (Department of Dental Laboratory Science and Engineering, College of Health Science, Korea University)
Ahn, Jin-Soo (Dental Research Institute and Department of Dental Biomaterials Science, School of Dentistry, Seoul National University)
Kim, Ji-Hwan (Department of Dental Laboratory Science and Engineering, College of Health Science, Korea University)
Kim, Hae-Young (Department of Dental Laboratory Science and Engineering, College of Health Science, Korea University)
Kim, Woong-Chul (Department of Dental Laboratory Science and Engineering, College of Health Science, Korea University)
Publication Information
The Journal of Advanced Prosthodontics / v.5, no.2, 2013 , pp. 161-166 More about this Journal
Abstract
PURPOSE. This study aimed to identify the effects of the sintering conditions of dental zirconia on the grain size and translucency. MATERIALS AND METHODS. Ten specimens of each of two commercial brands of zirconia (Lava and KaVo) were made and sintered under five different conditions. Microwave sintering (MS) and conventional sintering (CS) methods were used to fabricate zirconia specimens. The dwelling time was 20 minutes for MS and 20 minutes, 2, 10, and 40 hours for CS. The density and the grain size of the sintered zirconia blocks were measured. Total transmission measurements were taken using a spectrophotometer. Two-way analysis of variance model was used for the analysis and performed at a type-one error rate of 0.05. RESULTS. There was no significant difference in density between brands and sintering conditions. The mean grain size increased according to sintering conditions as follows: MS-20 min, CS-20 min, CS-2 hr, CS-10 hr, and CS-40 hr for both brands. The mean grain size ranged from 347-1,512 nm for Lava and 373-1,481 nm for KaVo. The mean light transmittance values of Lava and KaVo were 28.39-34.48% and 28.09-30.50%, respectively. CONCLUSION. Different sintering conditions resulted in differences in grain size and light transmittance. To obtain more translucent dental zirconia restorations, shorter sintering times should be considered.
Keywords
Grain size; Sintering; Translucency; Transmittance; Y-TZP; Zirconia;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tinschert J, Natt G, Mautsch W, Augthun M, Spiekermann H. Fracture resistance of lithium disilicate-, alumina-, and zirconia-based three-unit fixed partial dentures: a laboratory study. Int J Prosthodont 2001;14:231-238.
2 Chen YM, Smales RJ, Yip KH, Sung WJ. Translucency and biaxial flexural strength of four ceramic core materials. Dent Mater 2008;24:1506-1511.   DOI   ScienceOn
3 Li JF, Watanabe R. Phase Transformation in $Y_{2}O_{3}$-Partially- Stabilized $ZrO_{2}$Polycrystals of Various Grain Sizes during Low-Temperature Aging in Water. J Am Ceram Soc 1998;81: 2687-2691.
4 Ebadzadeh T, Valefi M. Microwave-assisted sintering of zircon. J Alloy Compd 2008;448:246-249.   DOI   ScienceOn
5 Cheng J, Agrawal D, Zhang Y, Roy R. Microwave sintering of transparent alumina. Mater Lett 2002;56:587-592.   DOI   ScienceOn
6 Luo J, Adak S, Stevens R. Microstructure evolution and grain growth in the sintering of 3Y-TZP ceramics. J Mater Sci 1998;33:5301-5309.   DOI   ScienceOn
7 ISO 18754 - Fine ceramics-advanced ceramics, advanced technical ceramics-Determination of density and apparent porosity. ISO; Geneva; Switzerland, 2008.
8 ASTM. Standard test method for determining average grain size E112-96. Part 301 2003:243-266.
9 Mendelson MI. Average Grain Size in Polycrystalline Ceramics. J Am Ceram Soc 1969;52:443-446.   DOI
10 Cook WD, McAree DC. Optical properties of esthetic restorative materials and natural dentition. J Biomed Mater Res 1985;19:469-488.   DOI   ScienceOn
11 Lee YK. Influence of scattering/absorption characteristics on the color of resin composites. Dent Mater 2007;23:124-131   DOI   ScienceOn
12 O'Brien WJ, Johnston WM, Fanian F. Double-layer color effects in porcelain systems. J Dent Res 1985;64:940-943.   DOI   ScienceOn
13 Hayashi K, Kobayashi O, Toyoda S, Morinag a K. Transmission optical properties of polycrystalline alumina with submicron grains. Mater Trans JIM 1991;32:1024-1029.
14 O YT, Koo JB, Hong KJ, Park JS, Shin DC. Effect of grain size on transmittance and mechanical strength of sintered alumina. Mat Sci Eng A 2004;374:191-195.   DOI   ScienceOn
15 Apetz R, van Bruggen MPB. Transparent alumina: A light scattering model. J Am Ceram Soc 2003;86:480-486.   DOI   ScienceOn
16 Alaniz JE, Perez-Gutierrez FG, Aguilar G, Garay JE. Optical properties of transparent nanocrystalline yttria stabilized zirconia. Opt Mater 2009;32:62-68.   DOI   ScienceOn
17 ISO 13356 - Implants for surgery-Ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP). ISO; Geneva; Switzerland, 2008.
18 Tekeli S, Erdogan M. A quantitative assessment of cavities in 3 mol% yttria-stabilized tetragonal zirconia specimens containing various grain size. Ceram Int 2002;28:785-789.   DOI   ScienceOn
19 Hjerppe J, Vallittu PK, Fröberg K, Lassila LV. Effect of sintering time on biaxial strength of zirconium dioxide. Dent Mater 2009;25:166-171.   DOI   ScienceOn
20 Akagawa Y, Hosokawa R, Sato Y, Kamayama K. Comparison between freestanding and tooth-connected partially stabilized zirconia implants after two years' function in monkeys: a clinical and histologic study. J Prosthet Dent 1998;80:551-558.   DOI   ScienceOn
21 Ichikawa Y, Akagawa Y, Nikai H, Tsuru H. Tissue compatibility and stability of a new zirconia ceramic in vivo. J Prosthet Dent 1992;68:322-326.   DOI   ScienceOn
22 Scarano A, Di Carlo F, Quaranta M, Piattelli A. Bone response to zirconia ceramic implants: an experimental study in rabbits. J Oral Implantol 2003;29:8-12.   DOI   ScienceOn
23 Rosenstiel SF, Land MF, Fujimoto J. Contemporary Fixed Prosthodontics. 4th ed. St. Louis; Mosby; 2006. p. 262, 643.
24 Yu B, Ahn JS, Lee YK. Measurement of translucency of tooth enamel and dentin. Acta Odontol Scand 2009;67:57-64.   DOI   ScienceOn
25 Heffernan MJ, Aquilino SA, Diaz-Arnold AM, Haselton DR, Stanford CM, Vargas MA. Relative translucency of six all-ceramic systems. Part I: core materials. J Prosthet Dent 2002; 88:4-9.
26 Heffernan MJ, Aquilino SA, Diaz-Arnold AM, Haselton DR, Stanford CM, Vargas MA. Relative translucency of six all-ceramic systems. Part II: core and veneer materials. J Prosthet Dent 2002;88:10-15.
27 Vichi A, Louca C, Corciolani G, Ferrari M. Color related to ceramic and zirconia restorations: a review. Dent Mater 2011; 27:97-108.   DOI   ScienceOn
28 Brodbelt RH, O'Brien WJ, Fan PL. Translucency of dental porcelains. J Dent Res 1980;59:70-75.   DOI   ScienceOn
29 Peelen JGJ, Metselaar R. Light-scattering by pores in polycrystalline materials: transmission properties of alumina. J Appl Phys 1974;45:216-220.   DOI   ScienceOn
30 Zhang HB, Kim BN, Morita K, Yoshida H, Lim JH, Hiraga K. Optimization of high-pressure sintering of transparent zirconia with nano-sized grains. J Alloy Compd 2010;508: 196-199.   DOI   ScienceOn
31 Clarke FJ. Measurement of color of human teeth. In: McLean JW, editor. Proceedings of the First International Symposium on Ceramics. Chicago: Quintessence; 1983. p. 441-490.
32 Casolco SR, Xu J, Garay JE. Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors. Scr Mater 2008;58:516-519.   DOI   ScienceOn
33 Jiang L, Liao Y, Wan Q, Li W. Effects of sintering temperature and particle size on the translucency of zirconium dioxide dental ceramic. J Mater Sci Mater Med 2011;22:2429-2435.   DOI   ScienceOn
34 Anselmi-Tamburini U, Woolman JN, Munir ZA. Transparent nanometric cubic and tetragonal zirconia obtained by highpressure pulsed electric current sintering, Adv Funct Mater 2007;17:3267-3273.   DOI   ScienceOn
35 Yang D, Raj R, Conrad H. Enhanced sintering rate of Zirconia (3Y-TZP) through the effect of a weak dc electric field on grain growth. J Am Ceram Soc 2010;93:2935-2937.   DOI   ScienceOn
36 Janney MA, Calhoun CL, Kimrey HD. Microwave sintering of solid oxide fuel cell materials: I, Zirconia-8 mol% Yttria. J Am Ceram Soc 1992;75:341-346.   DOI
37 Kelly JR, Nishimura I, Campbell SD. Ceramics in dentistry: historical roots and current perspectives. J Prosthet Dent 1996;75:18-32.   DOI   ScienceOn
38 Fischer H, Weber M, Marx R. Lifetime prediction of all-ceramic bridges by computational methods. J Dent Res 2003; 82:238-242.   DOI   ScienceOn
39 Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinical recommendations: a systematic review. J Prosthet Dent 2007;98:389-404.   DOI   ScienceOn