Browse > Article
http://dx.doi.org/10.4047/jkap.2019.57.2.142

Inhibition of Osteoclast differentiation based on precipitation time of titanium surfaces immersed in modified simulated body fluid  

Chang, Hyun-min (Department of Prosthodontics, School of Dentistry, Seoul National University)
Heo, Seong-Joo (Department of Prosthodontics, School of Dentistry, Seoul National University)
Kim, Seong-Kyun (Department of Prosthodontics, School of Dentistry, Seoul National University)
Koak, Jai-Young (Department of Prosthodontics, School of Dentistry, Seoul National University)
Publication Information
The Journal of Korean Academy of Prosthodontics / v.57, no.2, 2019 , pp. 142-149 More about this Journal
Abstract
Purpose: The purpose of this study is to investigate the changes of osteoclast differentiation inhibition according to the period of precipitation when titanium disks were immersed in Modified simulated body fluid (mSBF). Materials and methods: Titanium alloy (Ti grade III) disks with machined surfaces and anodized surfaces were immersed in distilled water and mSBF, respectively. The immersion periods were 7 days, 14 days, 21 days and 28 days, and the control group was immersed in distilled water for each period. RAW 264.7 cells capable of differentiating into osteoclasts were used to measure the number of adherent cells, the measurement of TRAP activity, and the expression pattern of NFATc1 by western blotting. Results: The degree of inhibition of osteoclast differentiation was found to be statistically significant when the disks were immersed in mSBF for more than 14 days on both machined surfaces and anodized surfaces. There was no correlation between immersion time and cell attachment. When the disks were immersed for more than 14 days, TRAP activity was decreased and NFATc1 expression was inhibited. Futhermore, the decrease in TRAP activity and the inhibition of NFATc1 expression remained unchanged. Conclusion: Immersion of titanium disks in mSBF for more than 14 days can prevent RAW 264.7 cells from differentiating into osteoclasts. Inhibition activity does not change even if the immersion period is for more than 14 days.
Keywords
Modified simulated body fluid (mSBF); Titanium alloy disk; Osteoclast differentiation; TRAP; NFATc1;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hori N, Ueno T, Suzuki T, Yamada M, Att W, Okada S, Ohno A, Aita H, Kimoto K, Ogawa T. Ultraviolet light treatment for the restoration of age-related degradation of titanium bioactivity. Int J Oral Maxillofac Implants 2010;25:49-62.
2 Junker R, Dimakis A, Thoneick M, Jansen JA. Effects of implant surface coatings and composition on bone integration: a systematic review. Clin Oral Implants Res 2009;20:185-206.   DOI
3 Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res 1990;24:721-34.   DOI
4 Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution? Biomaterials 2009;30:2175-9.   DOI
5 Kim MH, Lee SY, Kim MJ, Kim SK, Heo SJ, Koak JY. Effect of biomimetic deposition on anodized titanium surfaces. J Dent Res 2011;90:711-6.   DOI
6 Minkin C, Marinho VC. Role of the osteoclast at the boneimplant interface. Adv Dent Res 1999;13:49-56.   DOI
7 Kim MH, Lee SY, Heo SJ, Kim SK, Kim MJ, Koak JY. Osteoclastic response on titanium surfaces in modified simulated body fluid. Int J Oral Maxillofac Implants 2017;32:337-43.   DOI
8 Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan HL, Elliott G, Kelley MJ, Sarosi I, Wang L, Xia XZ, Elliott R, Chiu L, Black T, Scully S, Capparelli C, Morony S, Shimamoto G, Bass MB, Boyle WJ. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 1999;96:3540-5.   DOI
9 Takayanagi H. Osteoimmunological insight into bone damage in rheumatoid arthritis. Mod Rheumatol 2005;15:225-31.   DOI
10 Albrektsson T, Branemark PI, Hansson HA, Kasemo B, Larsson K, Lundstrom I, McQueen DH, Skalak R. The interface zone of inorganic implantsIn vivo: Titanium implants in bone. Ann Biomed Eng 1983;11:1-27.   DOI
11 Branemark PI, Adell R, Breine U, Hansson BO, Lindstrom J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 1969;3:81-100.   DOI
12 Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1986;1:11-25.
13 Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007;23:844-54.   DOI
14 de Jonge LT, Leeuwenburgh SC, Wolke JG, Jansen JA. Organic-inorganic surface modifications for titanium implant surfaces. Pharm Res 2008;25:2357-69.   DOI
15 Lang NP, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Bosshardt DD. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res 2011;22:349-56.   DOI
16 Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, Boyan BD. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A 2005;74:49-58.
17 Asagiri M, Sato K, Usami T, Ochi S, Nishina H, Yoshida H, Morita I, Wagner EF, Mak TW, Serfling E, Takayanagi H. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 2005;202:1261-9.   DOI