Browse > Article
http://dx.doi.org/10.5392/JKCA.2018.18.11.655

Simulator Development and Analysis for Signal Flow Pathway in Vertebrate Retina  

Baek, Seungbum (충북대학교 전자정보대학)
Jang, Young-Jo (한국기술교육대학 전자공학과)
Cho, Kyoungrok (충북대학교 전자정보대학)
Publication Information
Abstract
Retina transforms the external light into electrical signal that stimulates visual cortex of the brain. Electrical modeling of the retina is useful to understand its structure and action that is a prerequisite to implement the retina as a hardware device. This paper introduces a 2-D electrical network model of vertebrate's retina considering signal pathway of retinal cells and synapses. We implemented a simulator of the retina based on the electrical network model to analyze its operation under various circumstances. Compared to the prior studies, It might contribute designing of artificial retina device in terms of that this study specifically observed input and output reactions of each cell and synapse node under various light intensity on the retina.
Keywords
Artificial Retina; Mathematical Modeling of Retina; Retina Model Simulator;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. D. Cruz, B. F. Coley, J. Dorn, F. Merlini, E. Filley, P. Christopher, F. K. Chen, V. Wuyyuru, J. Sahel, P. Stanga, M. Humayun, R. J. Greenberg, and G. Dagnelie, “The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss,” British Journal of Ophthalmology, Vol. 97, No. 5, pp. 632-636, 2013.   DOI
2 J. M. Ong and L. D. Cruz, “The bionic eye : a review,” Clinical & Experimental Ophthalmology, Vol. 40, No. 1, pp. 6-17, 2012.   DOI
3 T. Guenther, N. H. Lovell, and G. J. Suaning, “Bionic vision : system architectures-a review,” Expert Review of Medical Devices, Vol. 9, No. 1, pp. 33-48, 2012.   DOI
4 K. Cho, S. Baek, S. W. Cho, J. H. Kim, Y. S. Goo, J. K. Eshraghian, N. Iannella, and K. Eshraghian, “Signal Flow Platform for Mapping and Simulation of Vertebrate Retina for Sensory Systems,” IEEE Sensors Journal, Vol. 16, No. 15, pp. 5856-5866, 2016.   DOI
5 J. K. Eshraghian, S. Baek, J. H. Kim, N. Iannella, K. Cho, Y. S. Goo, H. H. C. Iu, S. M. Kang, and K. Eshraghian, "Formulation and implementation of nonlinear integral equations to model neural dynamics within the vertebrate retina," International Journal of Neural Systems, Vol. 28, No. 7, p.1850004, 2018.   DOI
6 H. Benav, Modeling Effects of Extracellular Stimulation on Retinal Bipolar Cells, Ph.D. dissertation, University of Tubingen, Germany, 2012.
7 H. Choi, Modeling of Oscillations and Bursting in Retinal AII Amacrine Cells, Ph.D. dissertation, Northwestern University, USA, 2014.
8 P. Sterling, M. A. Freed, and R. G. Smith, “Architecture of Rod and Cone Circuits to the On-beta Ganglion Cell,” The Journal of Neuroscience, Vol. 8, No. 2, pp. 623-642, 1988.   DOI
9 A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” The Journal of Physiology, Vol. 117, No. 4, pp. 500-544, 1952.   DOI
10 Y. Kamiyama, S. M. Wu, and S. Usui, “Simulation analysis of bandpass filtering properties of a rod photoreceptor network,” Vision Research, Vol. 49, No. 9, pp. 970-978, 2009.   DOI
11 D. A. Baylor, A. L. Hodgkin, and T. D. Lamb, “Reconstruction of the electrical responses of turtle cones to flashes and steps of light,” The Journal of Physiology, Vol. 242, No. 3, pp. 759-791, 1974.   DOI
12 S. Usui, A. Ishihaiza, Y. Kamiyama, and H. Ishii, “Ionic current model of bipolar cells in the lower vertebrate retina,” Vision Research, Vol. 36, No. 24, pp. 4069-4076, 1996.   DOI
13 http://www.math.uwaterloo.ca/-sacampbe/mathbio/coursenotes/Ch2.pdf
14 R. G. Smith and N. Vardi, “Simulation of the AII amacrine cell of mammalian retina : Functional consequences of electrical coupling and regenerative membrane properties,” Visual Neuroscience, Vol. 12, No. 5, pp. 851-860, 1995.   DOI
15 J. F. Fohlmeister and R. F. Miller, “Impulse Encoding Mechanisms of Ganglion Cells in the Tiger Salamander Retina,” Journal of Neurophysiology, Vol. 78, No. 4, pp. 1935-1947, 1997.   DOI
16 R. Publio, R. F. Oliveira, and A. C. Roque, "A Computational Study on the Role of Gap Junctions and Rod Ih Conductance in the Enhancement of the Dynamic Range of the Retina," PLoS One, Vol. 4, No. 9, p.e6970, 2009.   DOI
17 https://kst-plot.kde.org/
18 http://ccns.cbnu.ac.kr/paper/1611/retinamodelsimulator.zip
19 A. C. Guyton and J. E. Hall, The eye : II. Receptor and neural function of the retina, 11th ed., Netherlands : Elsevier, 2006.
20 Y. Kamiyama, T. Ogura, and S. Usui, “Ionic Current Model of the Vertebrate Rod Photoreceptor,” Vision Research, Vol. 36, No. 24, pp. 4059-4068, 1996.   DOI