Browse > Article
http://dx.doi.org/10.14403/jcms.2018.31.1.75

EXISTENCE OF NON-CONSTANT POSITIVE SOLUTIONS FOR A RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH DISEASE IN THE PREY  

Ryu, Kimun (Department of Mathematics Education Cheongju University)
Publication Information
Journal of the Chungcheong Mathematical Society / v.31, no.1, 2018 , pp. 75-87 More about this Journal
Abstract
In this paper, we consider ratio-dependent predator-prey models with disease in the prey under Neumann boundary condition. We investigate sufficient conditions for the existence and non-existence of non-constant positive steady-state solutions by the effects of the induced diffusion rates.
Keywords
positive steady-states; ratio-dependent; disease-free; non-constant positive solution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Ahn, W. Ko, and K. Ryu, Asymptotic behavior of a ratio-dependent predatorprey system with disease in the prey, Discrete Contin. Dyn. Syst. Special (2013), 11-19.
2 R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional response, J. Math. Anal. Appl. 257 (2001), no. 1, 206-222.   DOI
3 R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: ratio dependence, J. Theor. Biol. 139 (1989), 311-326.
4 R. Arditi, L. R. Ginzburg, and H. R. Akcakaya, Variation in plankton densities among lakes: a case for ratio-dependent models, American Naturalist. 138 (1991), 1287-1296.
5 R. Arditi and H. Saiah, Empirical evidence of the role of heterogeneity in ratio-dependent consumption, Ecology, 73 (1992), 1544-1551.
6 C. Cosner, D. L. DeAngelis, J. S. Ault, and D. B. Olson, CEffects of spatial grouping on the functional response of predators, Theoret. Population Biol. 56 (1999), 65-75.
7 A. P. Gutierrez, The physiological basis of ratio-dependent predator-prey theory: a metabolic pool model of Nicholson's blow ies as an example, Ecology. 73 (1992), 1552-1563.
8 D. Henry, Geometric Theory of Semilinear Parabolic Equations: Lecture Notes in Mathematics, Springer, Berlin, New York, 840, 1993.
9 S. B. Hsu, T. W. Hwang, and Y. Kuang, Global analysis of the Michaelis-Mententype ratio-dependent predator-prey system, J. Math. Biol. 42 (2001), no. 6, 489-506.   DOI
10 S. B. Hsu, T. W. Hwang, and Y. Kuang, Rich dynamics of a ratio-dependent one-prey two-predators model, J. Math. Biol. 43 (2001), no. 5, 377-396.   DOI
11 S. B. Hsu, T. W. Hwang, and Y. Kuang, A ratio-dependent food chain model and its applications to biological control, Math. Biosci. 181 (2003), no. 1, 55-83.   DOI
12 Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol. 36 (1998), no. 4, 389-406.   DOI
13 Z. Lin and M. Pedersen, Stability in a diffusive food-chain model with Michaelis-Menten functional response, Nonlinear Anal. 57 (2004), 421-433.
14 L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute of Mathematical Science, New York, 1973.
15 P. Y. H. Pang and M. X. Wang, Stragey and stationary pattern in a three-species predator-prey model, J. Differential Equations. 200 (2004), 245-273.
16 P. Y. H. Pang and M. X. Wang, Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Roy. Soc. Edinburgh Sect. A. 133 (2003), no. 4, 919-942.