1 |
K. J. Arrow and G. Debreu, Existence of an equilibrium for a competitive economy, Econometrica 22 (1954), 265-290.
DOI
|
2 |
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
DOI
|
3 |
J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston (1990).
|
4 |
R. J. Aumann,Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12.
DOI
|
5 |
N. Brillouet-Belluot, J. Brzdek, and K. Cieplinski, Fixed Point Theory and the Ulam Stability, Abstract and Applied Analysis 2014, Article ID 829419, 16pages (2014).
|
6 |
J. Brzdek, L. Cadariu and K. Cieplinski, On Some Recent Developments in Ulam's Type Stability, Abstract and Applied Analysis 2012, Article ID 716936, 41 pages (2012).
|
7 |
C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, in: Lect. Notes in Math. 580, Springer, Berlin (1977).
|
8 |
J. K. Chung and P. K. Sahoo, On the general solution of a quartic functional equation, Bulletin of the Korean Mathematical Society 40 (2003), no. 4, 565-576.
DOI
|
9 |
G. Debreu, Integration of correspondences, in: Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. II, 1966, 351-372, Part I.
|
10 |
C. Hess, Set-valued Integration and Set-valued Probability Theory: an Overview, in: Handbook of Measure Theory, vols. I, II, North-Holland, Amsterdam (2002).
|
11 |
W. Hindenbrand, Core and Equilibria of a Large Economy, Princeton Univ. Press, Princeton (1974).
|
12 |
D. H. Hyers, On the stability of the linear equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
DOI
|
13 |
D. H. Hyers, G. Isac, and T. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Boston, Mass, USA (1998).
|
14 |
S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, vol. 48 of Springer Optimization and Its Applications, Springer, New York, NY, USA, (2011).
|
15 |
S.-M. Jung and Z.-H. Lee, A xed point approach to the stability of quadratic functional equation with involution, Fixed Point Theory Appl. 2008 Article ID 732086, 11 pages (2008).
|
16 |
E. Klein and A. Thompson, Theory of Correspondence, Wiley, New York (1984).
|
17 |
Y.-S. Lee and S.-Y. Chung, Stability of quartic functional equations in the spaces of generalized functions, Adv. Di. Equa. Article ID 838347, doi:10.1155/2009/838347 (2009).
DOI
|
18 |
L. W. McKenzie, On the existence of general equilibrium for a competitive market, Econometrica 27 (1959), 54-71.
DOI
|
19 |
B. Margolis and J. B. Diaz, A xed point theorem of the alternative for con- tractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126 74 (1968), 305-309.
|
20 |
K. Nikodem, K-Convex and K-Concave Set-Valued Functions, Zeszyty Naukowe Nr., 559, Lodz (1989).
|
21 |
H. Radstrom, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
DOI
|
22 |
J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glasnik Matematicki Series III 34 (1999), no. 2, 243-252.
|
23 |
S. M. Ulam, Problems in Morden Mathematics, Wiley, New York (1960).
|
24 |
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
DOI
|
25 |
I. A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, Cluj-Napoca, 1979 (in Romanian).
|