Browse > Article
http://dx.doi.org/10.14403/jcms.2013.26.2.427

MINIMAL QUASI-F COVERS OF SOME EXTENSION  

Kim, Chang Il (Department of Mathematics Education Dankook University)
Jung, Kap Hun (School of Liberal Arts Seoul National University of Science and Technology)
Publication Information
Journal of the Chungcheong Mathematical Society / v.26, no.2, 2013 , pp. 427-433 More about this Journal
Abstract
Observing that every Tychonoff space X has an extension $kX$ which is a weakly Lindel$\ddot{o}$f space and the minimal quasi-F cover $QF(kX)$ of $kX$ is a weakly Lindel$\ddot{o}$f, we show that ${\Phi}_{kX}:QF(kX){\rightarrow}kX$ is a $z^{\sharp}$-irreducible map and that $QF({\beta}X)=QF(kX)$. Using these, we prove that $QF(kX)=kQF(X)$ if and only if ${\Phi}^k_X:kQF(X){\rightarrow}kX$ is an onto map and ${\beta}QF(X)=(QF{\beta}X)$.
Keywords
quasi-F space; covering map; weakly Lindel$\ddot{o}$f space;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. M. Gleason, Projective topological spaces, Illinois J. Math. 2 (1958), 482-489.
2 M. Henriksen, J. Vermeer, and R. G. Woods, Wallman covers of compact spaces, Dissertationes Math. 280 (1989), 1-31.
3 M. Henriksen, J. Vermeer, and R. G. Woods, Quasi-F-covers of Tychonoff spaces, Trans. Amer. Math. Soc. 303 (1987), 779-804.
4 S. Iliadis, Absolute of Hausdorff spaces, Sov. Math. Dokl. 4 (1963), 295-298.
5 C. I. Kim and K. H. Jung, Minimal Basically Disconnected covers of some extension, Commun. Korean Math. Soc. 17 (2002), 709-718.   DOI   ScienceOn
6 J. R. Porter and R. G. Woods, Extensions and Absolutes of Hausdorff spaces, Springer Verlag, Berlin, 1988.
7 J. Vermeer, The smallest basically Disconnected preimage of a space, Topology Appl. 17 (1984), 217-232.   DOI   ScienceOn
8 Y. S. Yun and C. I. Kim, An extension which is a weakly Lindelof space, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 19 (2012), 273-279.
9 F. Dashiell, A. Hager, and M. Henriksen, Order-Cauchy completions of rings and vector lattices of continuous functions, Canad. J. Math. 32 (1980), 657-685.   DOI
10 L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, New York, 1960.