Browse > Article
http://dx.doi.org/10.14403/jcms.2013.26.1.175

ON LINEAR BCI-ALGEBRAS  

Kim, Young Hee (Department of Mathematics Chungbuk National University)
So, Keum Sook (Department of Mathematics Hallym University)
Publication Information
Journal of the Chungcheong Mathematical Society / v.26, no.1, 2013 , pp. 175-179 More about this Journal
Abstract
In this note, we show that every linear BCI-algebra (X; *, $e$), $e{\in}X$, has of the form $x*y=x-y+e$ where $x,\;y{\in}X$, where X is a field with $\left|X\right|{\geq}3$.
Keywords
BCI-algebra; BF-algebra; linear; quadratic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
2 Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.
3 K. Iseki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
4 K. Iseki, On BCI-algebras, Math. Sem. Notes 8 (1980), 125-130.
5 C. B. Kim and H. S. Kim, On BG-algebras, Demonstratio Math. 41 (2008), 497-505.
6 H. S. Kim and H. D. Lee, On quadratic BG-algebras, Int. Math. J. 5 (2004), 529-535.
7 H. S. Kim and N. R. Kye, On quadratic BF-algebras, Sci. Math. Japo. 65 (2007), 287-290.
8 J. Neggers and H. S. Kim, On B-algebras, Math.Vesnik 54 (2002), 21-29.
9 J. Neggers and H. S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J. 2 (2002), 207-214.
10 J. Neggers, S. S. Ahn and H. S. Kim, On Q-algebras, Int. J. Math Math. Sci. 27 (2001), 749-757.   DOI   ScienceOn
11 H. K. Park and H. S. Kim, On quadratic B-algebras, Quasiproups and Related Systems 8 (2001), 67-72.
12 A. Walendziak, On BF-algebras, Math. Slovaca 57 (2007), 119-128.   DOI