Browse > Article
http://dx.doi.org/10.14403/jcms.2010.23.4.773

NONLINEAR HEAT EQUATIONS WITH TRANSCENDENTAL NONLINEARITY IN BESOV SPACES  

Pak, Hee Chul (Department of Applied Mathematics and Institute of Basic Sciences Dankook University)
Chang, Sang-Hoon (Department of Applied Mathematics Dankook University)
Publication Information
Journal of the Chungcheong Mathematical Society / v.23, no.4, 2010 , pp. 773-784 More about this Journal
Abstract
The existence of solutions in Besov spaces for nonlinear heat equations having transcendental nonlinearity: $$\frac{\partial}{{\partial}t}u-{\Delta}u=F(u)$$ is investigated. In particular, it is proved the local existence and blow-up phenomena of the solutions in Besov spaces for nonlinear heat equations corresponding to two transcendental nonlinear functions $F(u){\equiv}{\mid}u{\mid}e^{u^2}$ and $F(u){\equiv}e^u$ of rapid growth.
Keywords
existence of solution; uniqueness of solution; nonlinear heat equation; Besov spaces; blow-up of solutions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Baras, Non unicite des solutions d'une equation d'evolution non lineaire, Ann. Fac. Sci. Toulouse 5 (1983), 287-302.   DOI
2 J. M. Bony, Calcul symbolique et propagation des singularities pour les equations aux derivees partielles non lineaires, Ann. de l'Ecole Norm. Sup. 14 (1981), 209-246.   DOI
3 H. Brezis and A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl. 62 (1983), 73-97.
4 H. Brezis, L. A. Peletier and D. Terman, A very singular solution of the heat equation with absorption, Arch. Rat. Mech. Anal. 95 (1986), 185-209.
5 T. Cazenave and Haraux, An Introduction to Semilinear Evolution Equations, Clarendon Press, Oxford, 1988.
6 J. Y. Chemin, Perfect incompressible fluids, Clarendon Press, Oxford, 1981.
7 L. C. Evans, Partial Differential Equation, American Mathematical Society, 1998.
8 A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, 1964.
9 Hyuk Han and H-C Pak, Resolvent inequality of Laplacian in Besov spaces, J. Chungcheong math. Soc. 22 (2009), no. 1.
10 A. Haraux and F. B. Weissler, Non uniqueness for a semilinear initial value problem, Indiana Univ. Math. J. 31 (1982), 167-189.   DOI
11 O. A. Ladyzhenskaya, V. A. Solonikov and N. N. Ural'ceva, Linear and Quasi- linear Equations of Parabolic Type, American Mathematical Society, 1968.
12 M. Nakamura and T. Ozawa, Nonlinear Schrodinger Equations in the Sobolev Space of Critical Order, J. Funct. Anal. 155 (1998), 364-380.   DOI   ScienceOn
13 H-C Pak and Y. J. Park, Existence of solution for the Euler equations in a critical Besov space $B^{1}_{\infty,1}$($R^{n}$), Comm. Partial Diff. Eq. 29 (2004), 1149-1166.   DOI   ScienceOn
14 H-C Pak and Y. J. Park, Vorticity existence for an ideal incompressible °uid in $B^{0}_{\infty,1}$ ($R^{3}$) $\cap$ $L^{p}$ ($R^{3}$), J. Math. Kyoto Univ. 45 (2005), 1-20.   DOI
15 E. M. Stein, Harmonic analysis; Real-variable methods, orthogonality, and os- illatory integrals, Princeton Mathematical Series, Vol. 43, 1993.
16 H. Triebel, Theory of Function spaces II, Birkhauser, 1992.
17 M. E. Taylor, Tools for PDE Pseudodifferential Operators, Para-differential Operators, and Layer Potentials, Mathematical surveys and Monographs, Vol. 81, American Mathematical Society, 2000.
18 M. Vishik, Hydrodynamics in Besov spaces, Arch. Rational Mech. Anal. 145 (1998), 197-214.   DOI   ScienceOn
19 F. B. Weissler, Local existence and nonexistence for semilinear parabolic equa- tions in $L^{p}$, Indiana Univ. Math. J. 29 (1980), 79-102.   DOI