Browse > Article
http://dx.doi.org/10.4334/JKCI.2011.23.6.749

The Combined Effect of Concrete Environment and High Temperature on Interlaminar Shear Strength of FRP Reinforcement  

Moon, Do-Young (Dept. of Civil Engineering, Kyungsung University)
Oh, Hong-Seob (Dept. of Civil Engineering, Gyeongnam National Univ. of Sci. and Tech.)
Publication Information
Journal of the Korea Concrete Institute / v.23, no.6, 2011 , pp. 749-756 More about this Journal
Abstract
Most experimental studies on durability of FRP reinforcements subjected to high temperature have focused on the effect of high temperature only on tensile properties. But FRP reinforcement used in newly constructed concrete structure is first degraded by moisture and alkaline environment of concrete. When the structure is subjected to fire, the degraded FRP reinforcement is exposed to high temperature. Therefore, the effects of concrete environment and high temperature should be simultaneously considered for evaluation of FRP reinforcement damaged by fire. In this study, FRP reinforcements submerged in simulated solutions of pH 12.3 and 7 for extended period of time were subjected to temperatures of $60^{\circ}C$, $100^{\circ}C$, $150^{\circ}C$, and $300^{\circ}C$ to be examined. In order to investigate the effect of the high temperature, interlaminar shear strengths were measured and compared to those of control ones. The experimental results demonstrated that the combined effect of concrete environment and high temperature on properties of FRP reinforcement was more significant than the effect of high temperature or concrete environment solely.
Keywords
FRP reinforcement; High temperature; Concrete environment; durability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Robert, M. and Benmokrane, B., "Effect of Aging on Bond of GFRP Bars Embedded in Concrete," Cement & Concrete Composites, Vol. 32, Issue 6, 2010, pp. 461-467.   DOI   ScienceOn
2 Masmoudi, R., Masmoudi, A., Ouezdou, M. B., and Daoud, A., "Long-Term Bond Performance of GFRP Bars in Concrete under Temperature Ranging from 20 to 80," Construction and Building Materials, Vol. 25, Issue 2, 2011, pp. 486-493.   DOI   ScienceOn
3 Abbasi, A. and Hogg, P. J., "Temperature and Environmental Effects on Glass Fibre Rebar: Modulus, Strength and Interfacial Bond Strength with Concrete," Composites: Part B, Vol. 36, Issue 5, 2005, pp. 394-404.   DOI   ScienceOn
4 문도영, 오홍섭, "알칼리저항 초단유리섬유를 리브에 사용한 유리섬유보강근의 내구성능," 구조물진단학회지, 15권, 1호, 2011, pp. 281-287.
5 Wang, Y. C. and Kodur, V. K. R., "Variation of Strength and Stiffness of Fibre Reinforced Polymer Reinforcing Bars with Temperature," Cement & Concrete Composites, Vol. 27, Issues 9-10, 2005, pp. 864-874.   DOI   ScienceOn
6 Saafi, M., "Effect of Fire on FRP Reinforced Concrete Members," Composite Structures, Vol. 58, Issue 1, 2002, pp. 11-20.   DOI   ScienceOn
7 Elbdry, M. M., Abdalla, H., and Ghali, A., "Effects of Temperature on the Behaviour of Fiber Reinforced Polymer Reinforced Concrete Members: Experimental Studies," Canadian Journal of Civil Engineering, Vol. 27, 2000, pp. 993-1004.   DOI   ScienceOn
8 Blontrock, H., Taerwe, L., and Matthys, S., "Properties of Fiber Reinforced Plastics at Elevated Temperatures with Regards to Fire Resistance of Reinforced Concrete Members," In: Fourth International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, Baltimore, American Concrete Institute, 1999, pp. 43-54.
9 Katz, A., Berman, N., and Bank, L. C., "Effect of High Temperature on Bond Strength of FRP Rebars," Composites for Construction, Vol. 3, No. 2, 1999, pp. 73-81.   DOI   ScienceOn
10 Gentry, T. and Husain, M., "Thermal Compatibility of Concrete and Composite Reinforcements," Composites for Construction, Vol. 3, No. 2, 1999, pp. 82-86.   DOI   ScienceOn
11 Aiello, M. A., Focacci, F., Huang, P. C., and Nanni, A., "Cracking of Concrete Cover in FRP Reinforced Concrete Elements under Thermal Loads," Selected Presentation Proc., 4 International Symposium on FRP for Reinforcement of Concrete Structures (FRPRCS4), Baltimore, USA, 1999, pp. 233-243.
12 Galati, N., Nanni, A., Dharani, L. R., Focacci, F., and Aiello, M. A., "Thermal Effects on Bond between FRP Rebars and Concrete," Composites: Part A, Vol. 37, Issue 8, 2006, pp. 1223-1230.   DOI   ScienceOn
13 Bisby, L. A. and Kodur, V. K. R., "Evaluating the Fire Endurance of Concrete Slabs Reinforced with FRP Bar: Considerations for a Holistic Approach," Composites : Part B, Vol. 38, Issues, 5-6, 2007, pp. 547-558.   DOI   ScienceOn
14 Elbadry, M. and Elzaroug, O., "Control of Cracking due to Temperature in Structural Concrete Reinforced with CFRP Bars," Composite Structures, Vol. 64, Issue 1, 2004, pp. 37-45.   DOI   ScienceOn