Browse > Article
http://dx.doi.org/10.4334/JKCI.2006.18.6.749

Suggestion for Confinement Steel Ratio of Rectangular RC Bridge Piers  

Park, Chang-Kyu (Dept. of Civil Engineering, Chung-Ang University)
Chung, Young-Soo (Dept. of Civil Engineering, Chung-Ang University)
Yun, Sang-Chul (Dept. of Civil Engineering, Chung-Ang University)
Publication Information
Journal of the Korea Concrete Institute / v.18, no.6, 2006 , pp. 749-757 More about this Journal
Abstract
Many losses of life and extensive damage of social infrastructures have occurred due to moderate and strong earthquakes all over the world. In this research various design parameters have been evaluated to develop a rational seismic design code of rectangular reinforced concrete(RC) bridge piers. It was confirmed from this study that the axial force ratio and longitudinal steel ratio were most influencing design parameters on the seismic displacement ductility from experimental results of 54 rectangular RC bridge piers, which were tested at domestic and foregin countries. However, these important parameters are not considered in the confinement steel ratio of Korea Highway Bridge Design Specification(KHBDS). The objective of this study is to propose a rational design provision for the transverse reinforcement of rectangular RC bridge piers. New confinement steel ratio is proposed by reflecting the effect of the axial force and longitudinal steel into the current code of KHBDS. furthermore, minimum transverse confinement steel ratio is also proposed to avoid a probable buckling of longitudinal reinforcing steels of RC bridge piers with a relatively low axial force. New practical code can alleviate the rebar congestion in the plastic hinge region of RC bridge pier, which contributes to construct RC bridge piers in a simple and economic way.
Keywords
rectangular RC bridge pier; confinement steel ratio; axial force ratio; longitudinal steel ratio;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Azizinamini, A., Kuska, S. S. B., Brungardt, P., and Hatfield, E., 'Seismic Behavior of Square High-Strength Concrete Columns', ACI Structural Journal, Vol.91, No.3, May-June 1994, pp.336-345
2 Rodriguez, M. and Park, R., 'Seismic Load Tests on Reinforced Concrete Columns Strengthened by Jacketing', ACI Structural Journal, Vol.91, No.2, Mar.-April 1994, pp.150-159
3 한국도로교통협회, 도로교설계기준, 건설교통부, 2000, pp.451-474
4 Wehbe, N. I., Saiidi, M. S., and Sanders, D. H., 'Seismic Performance of Rectangular Bridge Columns with Moderate Confinement,' ACI Structural Journal, Vol.96, No.2, Mar.-Apr. 1999, pp.248-259
5 Eurocode 8, Design Provision for Earthquake Resistance of Structures, Part 2. Bridges, European Committee for Standardization, CEN, 1996, pp.1-98
6 이대형, 박창규, 김현준, 정영수, '원형 철근콘크리트 교각의 내진성능(I)심부구속철근비 영향변수 평가', 콘크리트학회 논문집, 제17권 4호, 2005, pp.603-611
7 Bousias, S. N., Triantafillou, T. C., Fadis, M. N., Spathis, L., and O'Regan, B. A., 'Fiber Reinforced Polymer Retrofitting of Rectangular Reinforced Concrete Columns with or without Corrosion', ACI Structural Journal, Vol.101, No.4, July-Aug. 2004, pp.512-520
8 오병환, 조근호, 박대균, '횡보강근에 따른 고강도 콘크리트 및 고강도 철근을 사용한 중식교각의 내진거동에 관한 실험적 연구', 콘크리트학회 논문집, 제17권 1호, 2005, pp.27-34
9 AASHTO, Standard Specifications for Highway Bridges, 16th Ed., American Association of State Highway and Transportation Officials, USA, 2000, pp.389-424
10 박창규, 이대형, 이범기, 정영수, '원형 철근콘크리트 교각의 내진성능(II)-심부구속철근비 제안', 콘크리트학회논문집, 제17권 5호, 2005, pp.775-784
11 황선경, 윤현도, 정수영, '횡보강근에 따른 고강도 콘크리트 기둥의 휨강도와 연성', 콘크리트학회 논문집, 제14권 3호, 2002, pp.365-372   DOI
12 Saatcioglu, M. and Ozcebe, G., 'Response of Reinforced Concrete Column to Simulated Seismic Loading', ACI Structural Journal, Vol.86, No.1, Jan.-Feb. 1989, pp.3-12
13 Naito, C. J., Moehle, J. P., and Mosalam, K. M., 'Evaluation of Bridge Beam-Column Joints under Simulated Seismic Loading', ACI Structural Journal, Vol.99, No.1, Jan.-Feb.. 2002, pp.62-71
14 Harajli, M. H. and Rteil, A. A., 'Effect of Confinement Using Fiber-Reinforced Polymer or Fiber-Reinforced Concrete on Seismic Performance of Gravity Load-Designed Columns', ACI Structural Journal, Vol.101, No.1, Jan.-Feb. 2004, pp.47-56
15 Saatcioglu, M. and Grira, M., 'Confinement of Reinforced Concrete Columns with Welded Reinforcement Grids', ACI Structural Journal, Vol.96, No.1, January-February 1999, pp.29-39
16 Azizinamini, A., Corley, W. G., and Johal, L. S. P., 'Effects of Transverse Reinforcement on Seismic Performance of Columns', ACI Structural Journal, Vol.89, No.4, July-Aug. 1992, pp.442-450
17 New Zealand Standard, Concrete Structures Standard: Part I-The Design of Concrete Structures, NZS 3101, Standard New Zealand, 1995, pp.91-106
18 Mo, Y. L. and Wang, S. J., 'Seismic Behavior of RC Columns with Various Tie Configurations', ASCE Journal of Structural Engineering, Vol.126, No.10, 2000, pp.1122-1130   DOI   ScienceOn
19 Xiao, Y. and Yun, H. W., 'Experimental Studies on FullScale High-Strength Concrete Columns', ACI Structural Journal, Vol.99, No.2, Mar.-Apr. 2002, pp.199-207
20 Bayrak, O. and Sheikh, S. A., 'High-Strength Concrete Columns under Simulated Earthquake Loading', ACI Structural Journal, Vol.94, No.6, November-December 1997, pp. 708-722