Browse > Article
http://dx.doi.org/10.7733/jnfcwt.2020.18.2(E).261

Simulation Study on Atmospheric Emission Scenarios of Radioxenon Produced by the North Korea's 6th Nuclear Test  

Park, Kihyun (Korea Atomic Energy Research Institute)
Min, Byung-Il (Korea Atomic Energy Research Institute)
Kim, Sora (Korea Atomic Energy Research Institute)
Kim, Jiyoon (Korea Atomic Energy Research Institute)
Suh, Kyung-Suk (Korea Atomic Energy Research Institute)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.18, no.2_spc, 2020 , pp. 261-273 More about this Journal
Abstract
North Korea conducted the sixth underground nuclear test on September 3, 2017 at the Punggye-ri Nuclear Test Site (NTS). In contrast to the previous five nuclear tests, several induced earthquakes occurred around the NTS after the sixth nuclear test and this may have caused radioxenon leakages at the site. Considering these reported earthquakes, we performed atmospheric dispersion simulations on some radioxenon emission scenarios for this event using our Lagrangian Atmospheric Dose Assessment System (LADAS) model by employing the Unified Model (UM) based numerical weather prediction data produced by the Korea Meteorological Administration (KMA). To find out possible detection locations and times, we combined not only daily and weekly based delayed releases but also leakages after the reported earthquakes around the NTS to create emission scenarios. Our simulation results were generally in good agreement with the measured data of the Nuclear Safety and Security Commission and International Monitoring System (IMS) stations operated by the Comprehensive nuclear Test-Ban-Treaty Organization (CTBTO).
Keywords
Radioxenon; Atmospheric dispersion; Induced earthquake; IMS; CTBTO;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Auer, T. Kumber, H. Sartorius, B. Wernsperger, and C. Schlosser, "Ten years of development of equipment for measurement of atmospheric radioactive xenon for the verification of the CTBT", Pure Appl. Geophys., 167, 471-486 (2010).   DOI
2 Korea Meteorological Administration, Press Release, 5 Sep. 2017, KMA (2017).
3 Comprehensive Nuclear-Test-Ban Treaty Organization, official web page, Accessed Apr. 13 2020. Available from: https://www.ctbto.org.
4 Nuclear Safety and Security Commission, Press Release, Sep. 13 2017, NSSC (2017).
5 M.B. Kalinowski, "Characterisation of prompt and delayed atmospheric radioactivity releases from underground nuclear tests at Nevada as a function of release time", J. Environ. Radioactiv., 102(9), 824-836 (2011).   DOI
6 M. Kalinowski, P. Bourgouin, A. Gheddou, J. Kusmierczyk- Michulec, B. Liu, and T. Taylor, "Search for radioxenon signals at IMS stations possibly associated with announced DPRK nuclear tests", T2.4-O8, CTBT: Science and Technology Conference 2019, June 24-28, 2019, Vienna.
7 A. Ringbom, A. Axelsson, M. Aldener, M. Auer, T.W. Bowyer, T. Fritioff, I. Hoffman, K. Khrustablev, M. Nikkinen, V. Popov, Y. Popov, K. Ungar, and G. Wotawa, "Radioxenon detections in the CTBT international monitoring system likely related to the announced nuclear test in North Korea on February 12, 2013", J. Environ. Radioactiv., 128, 47-63 (2014).   DOI
8 P.D. Meutter, J. Camps, A. Delcloo, and P. Termonia, "Assessment of the announced North Korean nuclear test using long-range atmospheric transport and dispersion modelling", Sci. Rep., 7, 8762 (2017).   DOI
9 P. Gaebler, L. Ceranna, N. Nooshiri, A. Barth, S. Cesca, M. Frei, I. Grünberg, G. Hartmann, K. Koch, C. Pilger, J.O. Ross, and T. Dahm, "A multi-technology analysis of the 2017 North Korean nuclear test", Solid Earth, 10, 59-78 (2019).   DOI
10 Korea Meteorological Administration, "2017 Annual Earthquake Report", KMA (2018).
11 T.S. Kim, W. Baek, and H. Jung, "Yield Estimates for the DPRK's Sixth Nuclear Test with Radar and Seismic Analysis", T2.1-P34, CTBT: Science and Technology Conference 2019, June 24-28, 2019, Vienna.
12 K.S. Suh, H.J. Jeong, E.H. Kim, W.T. Hwang, and M.H. Han, "Verification of the Lagrangian particle model using the ETEX experiment", Ann. Nucl. Energy, 33(14-15), 1159-1163 (2006).   DOI
13 C. Maurer, J. Bare, J. Kusmierczyk-Michulec, A. Crawford, P.W. Eslinger, P. Seibert, B. Orr, A. Philipp, J.O. Ross, S. Generoso, P. Achim, M. Schoppner, A. Malo, A. Ringbom, O. Saunier, D. Quelo, A. Mathieu, Y. Kijima, A.F. Stein, T. Chai, F. Ngan, S.J. Leadbetter, P.D. Meutter, A. Delcloo, R. Britton, A. Davies, L.G. Glascoe, D.D. Lucas, M.D. Simpson, P. Vogt, M. Kalinowski, and T.W. Bowyer, "International challenge to model the long-range transport of radioxenon released from medical isotope production to six Comprehensive Nuclear-Test-Ban Treaty monitoring stations", J. Environ. Radioactiv., 192, 667-686 (2018).   DOI
14 P.D. Meutter, J. Camps, A. Delcloo, B. Deconninck, and P. Termonia, "Time resolution requirements for civilian radioxenon emission data for the CTBT verification regime", J. Environ. Radioactiv., 182, 117-127 (2018).   DOI
15 P. Achim, S. Generoso, M. Morin, P. Gross, G.L. Petit, and C. Moulin, "Characterization of Xe-133 global atmospheric background: Implications for the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty", J. Geophys. Res. Atmos., 121(9), 4951-4966 (2016).
16 P.W. Eslinger, T.W. Bowyer, P. Achim, T. Chai, B. Deconninck, K. Freeman, S. Generoso, P. Hayes, V. Heidmann, I. Hoffman, Y. Kijima, M. Krysta, A. Malo, C. Maurer, F. Ngan, P. Robins, J.O. Ross, O. Saunier, C. Schlosser, M. Schoppner, B.T. Schrom, P. Seibert, A.F. Stein, K. Ungar, and J. Yi, "International challenge to predict the impact of radioxenon releases from medical isotope production on a comprehensive nuclear test ban treaty sampling station", J. Environ. Radioactiv., 157, 41-51 (2016).   DOI
17 M. Schoeppner and W. Plastino, "Determination of the global coverage of the IMS xenon-133 component for the detection of nuclear explosions", Sci. Glob. Secur., 22(3), 209-234 (2014).   DOI