Browse > Article
http://dx.doi.org/10.7733/jnfcwt.2020.18.1.63

Study on the Species Distributions of Dissolved U(VI) and Adsorbed U(VI) on Silica Surface  

Jung, Euo Chang (Korea Atomic Energy Research Institute)
Kim, Tae-Hyeong (Korea Atomic Energy Research Institute)
Jo, Yongheum (KAIST)
Kim, Hee-Kyung (Korea Atomic Energy Research Institute)
Cho, Hye-Ryun (Korea Atomic Energy Research Institute)
Cha, Wansik (Korea Atomic Energy Research Institute)
Baik, Min Hoon (Korea Atomic Energy Research Institute)
Yun, Jong-Il (KAIST)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.18, no.1, 2020 , pp. 63-72 More about this Journal
Abstract
Dissolved hexavalent uranium can exist in the form of several different chemical species. Furthermore, species distributions depend on the pH value of the aqueous solution. Representatively, UO22+, UO2OH+, (UO2)2(OH)22+, and (UO2)3(OH)5+ species coexist in solutions at acidic and circumneutral pH values. When amorphous silica particles are suspended in an aqueous solution, the dissolved chemical species are easily adsorbed onto silica surfaces. In this study, it was examined whether the species distribution of the adsorbed U(VI) on a silica surface followed that of the dissolved U(VI) in an aqueous solution. Time-resolved luminescence spectra of three different dissolved species (UO22+, UO2OH+, and (UO2)3(OH)5+) and two different adsorbed species (≡SiO2UO2, ≡SiO2(UO2)OH-, or ≡SiO2(UO2)3(OH)5-) were measured in the pH range 3.5-7.5. The spectral shapes of these chemical species were compared by changing the pH value; consequently, it was confirmed that the species distribution of the adsorbed U(VI) species was different from that of the dissolved U(VI) species.
Keywords
Luminescence; Hexavalent uranium; Dissolved uranium; Adsorbed uranium; Silica;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.I. Kim, "Significance of Actinide Chemistry for the Long-Term Safety of Waste Disposal", Nucl. Eng. Technol., 38(6), 459-482 (2006).
2 M. Altmaier, X. Gaona, and T. Fanghanel, "Recent Advances in Aqueous Actinide Chemistry and Thermodynamics", Chem. Rev., 113, 910-943 (2013).
3 H. Geckeis, J. Lutzenkirchen, R. Polly, T. Rabung, and M. Schmidt, "Mineral-Water Interface Reactions of Actinides", Chem. Rev., 113(2), 1016-1062 (2013).   DOI
4 M.H. Baik, T.J. Park, I.Y. Kim, and K.W. Choi, "Research Status and Roles of Natural Analogue Studies in the Radioactive Waste Disposal", J. Nucl. Fuel Cycle Waste Technol., 11(2), 133-156 (2013).   DOI
5 J.Y. Lee and J.I. Yun, "Temperature-Dependent Hydrolysis Reactions of U(VI) Studies by TRLFS", J. Nucl. Fuel Cycle Waste Technol., 1(1), 65-73 (2013).   DOI
6 C. Moulin, P. Decambox, V. Moulin, and J.G. Decaillon, "Uranium Speciation in Solution by Time-Resolved Laser-Induced Fluorescence", Anal. Chem., 67, 348-353 (1995).   DOI
7 G. Bernhard, G. Geipel, T. Reich, V. Brendler, S. Amayri, and H. Nitsche, "Uranyl(VI) carbonate complex formation: Validation of the $Ca_2UO_2(CO_3)_3(aq.)$ species", Radiochim. Acta, 89, 511-518 (2001).   DOI
8 J.Y. Lee and J.I. Yun, "Formation of ternary $ CaUO_2(CO_3){_3}^{2-}$ and $Ca_2UO_2(CO_3)_3(aq)$ complexes under neutral to weakly alkaline conditions", Dalton Trans., 42, 9862-9869 (2013).   DOI
9 J.K. Lee, M.H. Baik, and J. Jeong, "Development of Sorption Database (KAERI-SDB) for the Safety Assessment of Radioactive Waste Disposal", J. Nucl. Fuel Cycle Waste Technol., 11(1), 41-54 (2013).   DOI
10 M.H. Baik, E.C. Jung, and J. Jeong, "Determination of uranium concentration and speciation in natural granitic groundwater using TRLFS", J. Radioanal. Nucl. Chem., 305, 589-598 (2015).   DOI
11 A. Kowal-Fouchard, R. Drot, E. Simoni, and J.J. Ehrhardt, "Use of Spectroscopic Techniques for Uranium(VI)/Montmorillonite Interaction Modelling", Environ. Sci. Technol., 38, 1399-1407 (2004).   DOI
12 R. Drot, J. Roques, and E. Simoni, "Molecular approach of the uranyl/mineral interaction phenomena", C. R. Chimie, 10, 1078-1091 (2007).   DOI
13 J. Wheeler and J.K. Thomas, "Photochemistry of the Uranyl Ion in Colloidal Silica Solution", J. Phys. Chem. 88, 750-754 (1984).   DOI
14 H. Moll, G. Geipel, V. Brendler, G. Berhard, and H. Nitsche, "Interaction of uranium(VI) with silicic acid in aqueous solutions studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS)", J. Alloys Compd., 271-273, 765-768 (1998).   DOI
15 U. Gabriel, L. Charlet, C.W. Schläpfer, J.C. Vial, A. Brachmann, and G. Geipel, "Uranyl Surface Speciation on Silica Particles Studied by Time-Resolved Laser-Induced Fluorescence Spectroscopy", J. Colloid Interface Sci., 239, 358-368 (2001).   DOI
16 C.J. Chisholm-Brause, J.M. Berg, K.M. Little, R.A. Matzner, and D.E. Morris, "Uranyl sorption by smectites: spectroscopic assessment of thermodynamic modelling", J. Colloid Interface Sci., 277, 366-382 (2004).   DOI
17 N. Baumann, V. Brendler, T. Arnold, G. Geipel, and G. Bernhard, "Uranyl sorption onto gibbsite studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS)", J. Colloid Interface Sci., 290, 318-324 (2005).   DOI
18 P. Trepte, V. Brendler, Supporting Information in A. Krepelova, V. Brendler, S. Sachs, N. Baumann, and G. Bernhard, "U(VI)-Kaolinite Surface Complexation in Absence and Presence of Humic Acid Studied by TRLFS", Environ. Sci. Technol., 41, 6142-6147 (2007).   DOI
19 G. Othmane, T. Allard, T. Vercouter, G. Morin, M. Fayek, and G. Calas, "Luminescence of uranium-bearing opals: Origin and use as a pH record", Chem. Geol., 423, 1-6 (2016).   DOI
20 C.J. Chisholm-Brause, J.M. Berg, R.A. Matzner, and D.E. Morris, J. "Uranium(VI) Sorption Complexes on Montmorillonite as a Function of Solution Chemistry", Colloid Interface Sci., 233, 38-49 (2001).   DOI
21 T. Arnold, S. Utsunomiya, G. Geipel, R.C. Ewing, N. Baumann, and V. Brendler, "Adsorbed U(VI) Surface Species on Muscovite Identified by Laser Fluorescence Spectroscopy and Transmission Electron Microscopy", Environ. Sci. Technol., 40, 4646-4652 (2006).   DOI
22 Z. Wang, J.M. Zachara, P.L. Gassman, C. Liu, O. Qafoku, W. Yantasee, and J.G. Catalano, "Fluorescence spectroscopy of U(VI)-silicates and U(VI)-contaminated Hanford sediment", Geochim. Cosmochim. Acta, 69, 1391-1403 (2005).   DOI
23 T. Reich, H. Moll, M.A. Denecke, G. Geipel, G. Bernhard, H. Nitsche, P.G. Allen, J.J. Bucher, N. Kaltsoyannis, N.M. Edelstein, and D.K. Shuh, "Characterization of hydrous uranyl silicate by EXAFS", Radiochim. Acta, 74, 219-223 (1996).   DOI
24 R. Guilaumont, T. Fanghänel, V. Neck, J. Fuger, D.A. Palmer, I. Grenthe, and M.H. Rand, "Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium, and Technetium", OECD-NEA, Elsevier (2003).
25 T. Reich, H. Moll, T. Arnold, M.A. Denecke, C. Hennig, G. Geipel, G. Bernhard, H. Nitsche, P.G. Allen, J.J. Bucher, N.M. Edelstein, and D.K. Shuh, "An EXAFS study of uranium(VI) sorption onto silica gel and ferrihydrite", J. Electron Spectrosc. Relat. Phenom., 96, 237-243 (1998).   DOI
26 E.R. Sylwester, E.A. Hudson, and P.G. Allen, "The structure of uranium (VI) sorption complexes on silica, alumina, and montmorillonite", Geochim. Cosmochim. Acta, 64, 2431-2438 (2000).   DOI
27 M. Walter, T. Arnold, G. Geipel, A. Scheinost, and G. Bernhard, "An EXAFS and TRLFS investigation on uranium(VI) sorption to pristine and leached albite surfaces", J. Colloid Interface Sci., 282, 293-305 (2005).   DOI
28 M.S. Massey, J.S. Lezama-Pacheco, J.M. Nelson, S. Fendorf, and K. Maher, "Uranium Incorporation into Amorphous Silica", Environ. Sci. Technol., 48, 8636-8644 (2014).   DOI
29 E.C. Jung, M.H. Baik, H.R. Cho, H.K. Kim, and W. Cha, "Study on the Interaction of U(VI) Species With Natural Organic Matters in KURT Groundwater", J. Nucl. Fuel Cycle Waste Technol., 15(2), 101-116 (2017).   DOI
30 E.C. Jung, H.R. Cho, H.K. Kim, and W. Cha, "Laser-Based Spectroscopic Studies of Actinide Complexes", in The Heaviest Metals, Science and Technology of the Actinides and Beyond; Edited by W. J. Evans, T. P. Hanusa, published by John Wiley & Sons, Ltd., 209-222 (2019).