Browse > Article
http://dx.doi.org/10.7733/jnfcwt.2015.13.3.235

A Preliminary Study on the Feasibility of Copper Mesh as an Off-Gas Iodine Capturing Medium for Pyroprocessing  

Jeon, Min Ku (Korea Atomic Energy Research Institute)
Lee, Tae Kyo (Korea Atomic Energy Research Institute)
Choi, Yong Taek (Korea Atomic Energy Research Institute)
Eun, Hee-Chul (Korea Atomic Energy Research Institute)
Choi, Jung Hoon (Korea Atomic Energy Research Institute)
Park, Hwan-Seo (Korea Atomic Energy Research Institute)
Hur, Jin-Mok (Korea Atomic Energy Research Institute)
Ahn, Do-Hee (Korea Atomic Energy Research Institute)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.13, no.3, 2015 , pp. 235-242 More about this Journal
Abstract
A commercially available copper mesh was investigated as an iodine off-gas capturing medium for pyroprocessing, with an aim to replace costly silver based adsorbents. Theoretical calculation results suggested that the reaction between metallic copper and gaseous iodine will occur spontaneously to produce copper iodide in the temperature range of 100 ~ 500℃. The effect of the reaction temperature on iodine capturing efficiency was investigated by experimentation, and it was found that 5 and 6 wt% of iodine (initial mass 2.0 g) was captured by a single copper mesh (0.26 g) at 300 and 400℃, respectively. The repeated experimental results also suggested that copper utilization can be increased with the help of the spontaneous detachment of the reaction product (CuI) from a copper mesh. The formation of the CuI phase was confirmed using the X-ray diffraction technique, and the surface morphology of the reaction product was observed using scanning electron microscopy.
Keywords
Iodine capture; Copper iodide; Copper mesh; Off-Gas treatment; Pyroprocessing;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A.F. Holleman and E. Wiberg, Inorganic Chemistry, 1253-1256, Academic Press, San Diego (2001).
2 A. Karhu. Gas phase chemistry and removal of CH3I during a severe accident, VTT Energy (Finland), Nordic nuclear safety research NKS-25, 12-14, ISBN 87-7893-076-6 (2001).
3 D.R. Haefner and T.J. Tranter. Methods of gas phase capture of iodine from fuel reprocessing off-gas: A literature survey, Idaho National Laboratory Report, 1-13, INL/EXT-07-12299 (2007).
4 T.M. Nenoff, J.L. Krumhansl, H. Gao, A. Rajan, and K. McMahon. Iodine waste form summary report, Sandia National Laboratory Report, 8-11, SAND2007-6202 (2007).
5 N. Mnasri, C. Charnay, L.C. de Ménorval, Y. Moussaoui, and E. Elaloui, “Silver nanoparticle-containing submicron-in-size mesoporous silica-based systems for iodine entrapment and immobilization from gas phase”, Micropor. Mesopor. Mat., 196(1), 305-313 (2014).   DOI
6 G.B. Kauffman, L.Y. Fang, N. Viswanathan, and G. Townsend, “Purification of copper(I) iodide”, Inorg. Synth., 22, 101-103 (1983).
7 Wikipedia contributors. Feb 8 2015. "Silver iodide." Wikipedia: The Free Encyclopedia. Accessed Jun. 1 2015. Available from: https://en.wikipedia.org/wiki/Silver_iodide.
8 E. Tachikawa, M. Tanase, and K. Motojima, “Trapping and recovery of radioiodine compounds by copper metal”, Int. J. Applied Rad. And Isot., 26(12), 758-762 (1975).   DOI
9 A. Roine, Outokumpu HSC chemistry for windows, Pori, Finland (2002).
10 K.C. Song, H. Lee, J.M. Hur, J.G. Kim, D.H. Ahn, and Y.Z. Cho, “Status of pyroprocessing technology development in Korea”, Nucl. Eng. Technol., 42(2), 131-144 (2010).   DOI
11 H. Lee, G.I. Park, K.H. Kang, J.M. Hur, J.G. Kim, D.H. Ahn, Y.Z. Cho, and E.H. Kim, “Pyroprocessing technology development at KAERI”, Nucl. Eng. Technol., 43(4), 317-328 (2011).   DOI
12 Y. Yude, H. Boysen, and H. Schulz, “Neutron powder investigation of CuI”, Z. Kristallogr., 191(1-2), 79-91 (1990).   DOI