Browse > Article

Soil-to-Rice Seeds Transfer Factors of Radioiodine and Technetium for Paddy Fields around the Radioactive-Waste Disposal Site in Gyeongju  

Choi, Yong-Ho (Korea Atomic Energy Research Institute)
Lim, Kwang-Muk (Korea Atomic Energy Research Institute)
Jun, In (Korea Atomic Energy Research Institute)
Park, Doo-Won (Korea Atomic Energy Research Institute)
Keum, Dong-Kwon (Korea Atomic Energy Research Institute)
Han, Moon-Hee (Korea Atomic Energy Research Institute)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.8, no.4, 2010 , pp. 329-337 More about this Journal
Abstract
Radiotracer experiments were performed over two years using pot cultures in a greenhouse to investigate soil-torice seeds transfer factors of radioiodine and technetium for paddy fields around the radioactive-waste disposal site in Gyeongju. Before transplanting rice seedlings, the top about 20 cm soils were thoroughly mixed with $^{125}I$ (2007) and $^{99}Tc$ (2008), and the pots were irrigated to simulate flooded rice fields. Transfer factors were determined as the ratios of the radionuclide concentrations in dry rice seeds (brown rice) to those in dry soils. Transfer factors of radioiodine and technetium were in the ranges of $1.1{\times}10^{-3}{\sim}6.4{\times}10^{-3}$ (three soils) and $5.4{\times}10^{-4}{\sim}2.5{\times}10^{-3}$ (four soils), respectively, for different soils. It seems that the differences in the clay content among soils played a more important role for such variations than those in the organic matter content and pH. As the representative values of radioiodine and technetium transfer factors for rice seeds, $2.9{\times}10^{-3}$ and $1.1{\times}10^{-3}$, respectively, were proposed. In order to obtain more highly representative values in the future, investigations for the sites of interest need to be carried out continuously.
Keywords
Gyungju; Paddy Soil; Rice Seeds; Transfer Factor; Radioiodine; Technetium;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 최용호, 임광묵, 황원태, 최근식, 최희주, 이창우, 가동중 원자력 시설 주변 주민의 내부피폭선량 계산을 위한 농산물 내 핵종 농도 평가법 개선, 대한방사선방어학회지, 29, pp. 73-90 (2004).   과학기술학회마을
2 K. Yanagisawa, Y. Muramatsu and H. Kamada, Tracer experiments on the transfer of technetium from soil to rice and wheat plants, Radioisotopes, 41, pp. 397-402 (1992).   DOI
3 R. Bennett and N. Willey, Soil availability, plant uptake and soil to plant transfer of 99Tc - A review, J. Environ. Radioactivity, 65, pp. 215-231 (2003).   DOI   ScienceOn
4 W. Schimmack, U. Gerstmann, W. Schultz, M. Sommer, V. Tschopp and G. Zimmermann, Intracultivar variability of the soil-to-grain transfer of fallout $^{137}Cs$ and $^{90}Sr$ for winter wheat, J. Environ. Radioactivity, 94, pp. 16-30 (2007).   DOI   ScienceOn
5 International Atomic Energy Agency, Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments, IAEA-TECDOC-1616, IAEA, Vienna (2009).
6 H. Takagi, T. Kimura, H. Kobayashi, K. Iwashima and N. Yamagata, Transfer of iodine from paddy soil to rice grain, Hoken-Butsuri, 20, pp. 251-257 (in Japanese) (1985).   DOI
7 Y. Muramatsu, S. Yoshida, U. Fehn, S. Amachi and Y. Ohmomo, Studies with natural and anthropogenic iodine isotopes: iodine distribution and cycling in the global environment, J. Environ.Radioactivity, 74, pp. 221-232 (2004).   DOI   ScienceOn
8 International Atomic Energy Agency, Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments, Technical Reports Series No. 472, IAEA, Vienna (2010).
9 T. Shinonaga, M.H. Gerzabek, F. Streble and Y. Muramatsu, Transfer of iodine from soil to cereal grains in agricultural areas of Austria, Sci. Total Environ., 267, pp. 33-40 (2001).   DOI   ScienceOn
10 International Atomic Energy Agency, Generic Models and Parameters for Assessing the Environmental Transfer of Radionuclides from Routine Releases, Safety Series No. 57, IAEA, Vienna (1982).
11 N. Ishii, H. Koiso, H. Takeda and S. Uchida, Environmental conditions for the formation of insoluble Tc in water ponds located above paddy fields, J. Environ. Radioactivity, 99, pp. 965-972 (2008).   DOI   ScienceOn
12 H. Marschner, Mineral Nutrition in Higher Plants, Academic Press, London (1986)
13 조성진, 박천서, 엄대익, 토양학, 향문사, 서울 (1997).
14 Y. Muramatsu, S. Uchida, M. Sumiya, Y. Ohmomo and H. Obata, Tracer experiments on transfer of radioiodine in the soil-rice plant system, Water, Air and Soil Pollution, 45, pp. 157-171 (1989).
15 Y. Muramatsu, S. Uchida and Y. Ohmomo, Root uptake of radioiodine by rice plants, J. Radiation Research, 34, pp. 214-220 (1993).   DOI   ScienceOn
16 S. C. Sheppard, M. I. Sheppard and W. G. Evenden, A novel method used to examine variation in technetium sorption among 34 soils, aerated and anoxic, J. Environ. Radioactivity, 11, pp. 215-233 (1990).   DOI   ScienceOn
17 S. Yoshida, Y. Muramatsu and S. Uchida, Studies on the sorption of $I^-$ (iodide) and $IO_3^\amalg-$ (iodate) onto Andosols, Water, Air and Soil Pollution, 63, pp. 321-329 (1992).   DOI
18 K. Yanagisawa and Y. Muramatsu, Transfer of technetium from soil to paddy and upland rice, J. Radiation Research, 36, pp. 171-178 (1995).   DOI   ScienceOn
19 S. Denys, G. Echevarria, L. Florentin, E. Leclerc- Cessac and J.-L. Morel, Availability of $^{99}TC$ in undisturbed soil cores, J. Environ. Radioactivity, 70, pp. 115-126 (2003).   DOI   ScienceOn
20 G. Echevarria, P.C. Vong and J.L. Morel, Effect of $NO_3^-$ on the fate of $99TcO_4$ in the soil-plant system, J. Environ. Radioactivity, 38, pp. 163-171 (1998).   DOI   ScienceOn
21 K. Tagami and S. Uchida, Chemical transformation of technetium in soil during the change of soil water conditions, Chemosphere, 38, pp. 963-971 (1999).   DOI   ScienceOn
22 D.J. Ashworth and G. Shaw, Soil migration and plant uptake of technetium from a fluctuating water table, J. Environ. Radioactivity, 81, pp. 155-171 (2005).   DOI   ScienceOn
23 Y. Muramatsu, S. Yoshida, S. Uchida and S. Hasebe, Iodine desorption from rice paddy soil, Water, Air and Soil Pollution, 86, pp. 359-371 (1996).   DOI
24 이창우, 정근호, 조영현, 강문자, 이완로, 김희령, 최근 식, "한국 토양의 99Tc 분석 및 방사능 농도 준위,"방사성폐기물학회지, 7, pp. 25-31 (2009).   과학기술학회마을
25 N. Yamaguchi, M. Nakano, R. Takamatsu and H. Tanida, Inorganic iodine incorporation into soil organic matter: evidence from iodine K-edge X-ray absorption near-edge structure, J. Environ. Radioactivity, in press (2009).
26 이은웅, 수도작, 향문사, 서울 (1996)
27 F. Wigley, P.E. Warwick, I.W. Croudace, J. Caborn and A.L. Sanchez, Optimised method of the routine determination of technetium-99 in environmental samples by liquid scintillation counting, Analytica Chimica Acta, 380, pp. 73-82 (1999).   DOI   ScienceOn
28 D.J. Ashworth, G. Shaw, A.P. Butler and L. Ciciani, Soil transport and plant uptake of radioiodine from near-surface groundwater, J. Environ. Radioactivity, 70, pp. 99-114 (2003).   DOI   ScienceOn
29 S. C. Sheppard, Interpolation of solid/liquid partition coefficients, Kd, for iodine in soils, J. Environ. Radioactivity, 70, pp. 21-27 (2003).   DOI   ScienceOn
30 성석현, 정의영, 김기홍, "국내 방사성폐기물 특성과 방사성폐기물 처분시설 폐기물 인수기준,"방사성폐기물학회지, 6, pp. 347-356 (2008).   과학기술학회마을
31 C. Myttenaere, P. Bourdeau and M. Masset, Relative importance of soil and water in the indirect contamination of flooded rice with radiocesium. Health Physics 16, 701-707 (1969).   DOI   ScienceOn
32 J. E. Till and H.R. Meyer, Radiological Assessment, U. S. Nuclear Regulatory Commission, NUREG/CR-3332, ORNL-5968 (1983).
33 A. Tsumura, M. Komamura and H. Kobayashi, Behavior of radioactive Sr and Cs in soils and soil-plant system, in: Report of National Institute of Agricultural Science-B. No 36, 57-113 (in Japanese) (1984).
34 최용호 등, 한국인의 섭취 피폭선량 평가를 위한 농작물 핵종 이동인자, 기술보고서, KAERI/TR-1993/2001, 한국원자력연구소 (2001).
35 H. Velasco, J. Juri Ayub and U. Sansone, Influence of crop types and soil properties on radionuclide soil-to-pant transfer factors in tropical and subtropical environments, J. Environ. Radioactivity, 100, pp. 733-738 (2009).   DOI   ScienceOn
36 S. Uchida, K. Tagami, Z.R. Shang and Y.H. Choi, Uptake of radionuclides and stable elements from paddy soil to rice: a review, J. Environ. Radioactivity, 100, pp. 739-745 (2009).   DOI   ScienceOn
37 T. J. D'souza and K. B. Mistry, Absorption of gamma-emitting fission products and activation products by rice under flooded and unflooded conditions from two tropical soils. Plant and Soil 55, 189-198 (1980).   DOI