Browse > Article
http://dx.doi.org/10.12717/DR.2021.25.3.173

Generation of Miniaturized Ovaries by In Vitro Culture from Mouse Gonads  

Jang, Si Won (Dept. of Agricultural Convergence Technology, Jeonbuk National University)
Choi, Hyun Woo (Dept. of Agricultural Convergence Technology, Jeonbuk National University)
Publication Information
Development and Reproduction / v.25, no.3, 2021 , pp. 173-183 More about this Journal
Abstract
The incidence of infertility among individuals of reproductive age has been growing due to genetic and environmental factors, and considerable research efforts are focused on solving this issue. Ovarian development is an overly complex process in the body, involving the interaction between primordial germ cells and gonad somatic cells. However, follicles located in the center of the in vitro ovary are poorly formed owing to ovarian complexity, nutrient deficiency, and signaling deficiency. In the present study, we optimized methods for dissociating gonads and culture conditions for the in vitro generation of miniaturized ovaries. The gonads from embryos were dissociated into cell masses and cultured on a Transwell-COL membrane for 3-5 weeks. Approximately 12 follicles were present per in vitro ovary. We observed that miniaturized ovaries successfully matured to MII oocytes in vitro from 150 to 100 ㎛ gonad masses. This method will be useful for investigating follicle development and oocyte production.
Keywords
Gonad; Oogenesis; Oocyte; In vitro; Follicle formation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pushpa K, Kumar GA, Subramaniam K (2017) Translational control of germ cell decisions. In: Arur S (ed), Results and Problems in Cell Differentiation. Springer, Cham, pp 175-200.
2 Saitou M, Miyauchi H (2016) Gametogenesis from pluripotent stem cells. Cell Stem Cell 18:721-735.   DOI
3 Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663-676.   DOI
4 Aramaki S, Hayashi K, Kurimoto K, Ohta H, Yabuta Y, Iwanari H, Mochizuki Y, Hamakubo T, Kato Y, Shirahige K, Saitou M (2013) A mesodermal factor, T, specifies mouse germ cell fate by directly activating germline determinants. Dev Cell 27:516-529.   DOI
5 Brown MA, Wallace CS, Anamelechi CC, Clermont E, Reichert WM, Truskey GA (2007) The use of mild trypsinization conditions in the detachment of endothelial cells to promote subsequent endothelialization on synthetic surfaces. Biomaterials 28:3928-3935.   DOI
6 Dolega ME, Abeille F, Picollet-D'hahan N, Gidrol X (2015) Controlled 3D culture in Matrigel microbeads to analyze clonal acinar development. Biomaterials 52:347-357.   DOI
7 Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154-156.   DOI
8 Gondos B, Conner LA (1973) Ultrastructure of developing germ cells in the fetal rabbit testis. Am J Anat 136:23-41.   DOI
9 Pierzchalska M, Grabacka M, Michalik M, Zyla K, Pierzchalski P (2012) Prostaglandin E2 supports growth of chicken embryo intestinal organoids in Matrigel matrix. Biotechniques 52:307-315.   DOI
10 Gondos B (1973) Germ cell degeneration and intercellular bridges in the human fetal ovary. Z Zellforsch Mikrosk Anat 138:23-30.   DOI
11 Nakaki F, Hayashi K, Ohta H, Kurimoto K, Yabuta Y, Saitou M (2013) Induction of mouse germ-cell fate by transcription factors in vitro. Nature 501:222-226.   DOI
12 Ventela S (2006) Cytoplasmic bridges as cell-cell channels of germ cells. In: Baluska F, Volkmann D, Barlow PW (eds), Cell-Cell Channels. Springer, New York, NY, pp 208-216.
13 Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146:519-532.   DOI
14 Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, Hamada N, Shimamoto S, Imamura T, Nakashima K, Saitou M, Hayashi K (2016) Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 539:299-303.   DOI
15 Kim EJ, Lee J, Youm HW, Kim SK, Lee JR, Suh CS, Kim SH (2018) Comparison of follicle isolation methods for mouse ovarian follicle culture in vitro. Reprod Sci 25:1270-1278.   DOI
16 Lei L, Zhang H, Jin S, Wang F, Fu M, Wang H, Xia G (2006) Stage-specific germ-somatic cell interaction directs the primordial folliculogenesis in mouse fetal ovaries. J Cell Physiol 208:640-647.   DOI
17 Pepling ME, de Cuevas M, Spradling AC (1999) Germline cysts: A conserved phase of germ cell development? Trends Cell Biol 9:257-262.   DOI
18 Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861-872.   DOI
19 Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M (2012) Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 338:971-975.   DOI
20 Fawcett DW (1961) Intercellular bridges. Exp Cell Res 8:174-187.   DOI
21 Tanaka SS, Nagamatsu G, Tokitake Y, Kasa M, Tam PPL, Matsui Y (2004) Regulation of expression of mouse interferon-induced transmembrane protein like gene-3, Ifitm3 (mil-1, fragilis), in germ cells. Dev Dyn 230:651-659.   DOI
22 Lang SH, Stark M, Collins A, Paul AB, Stower MJ, Maitland NJ (2001) Experimental prostate epithelial morphogenesis in response to stroma and three dimensional matrigel culture. Cell Growth Differ 12:631-640.
23 Kurimoto K, Yabuta Y, Hayashi K, Ohta H, Kiyonari H, Mitani T, Moritoki Y, Kohri K, Kimura H, Yamamoto T, Katou Y, Shirahige K, Saitou M (2015) Quantitative dynamics of chromatin remodeling during germ cell specification from mouse embryonic stem cells. Cell Stem Cell 16:517-532.   DOI
24 Sabour D, Arauzo-Bravo MJ, Hubner K, Ko K, Greber B, Gentile L, Stehling M, Scholer HR (2011) Identification of genes specific to mouse primordial germ cells through dynamic global gene expression. Hum Mol Genet 20:115-125.   DOI
25 Saitou M, Barton SC, Surani MA (2002) A molecular programme for the specification of germ cell fate in mice. Nature 418:293-300.   DOI
26 Sasaki K, Yokobayashi S, Nakamura T, Okamoto I, Yabuta Y, Kurimoto K, Ohta H, Moritoki Y, Iwatani C, Tsuchiya H, Nakamura S, Sekiguchi K, Sakuma T, Yamamoto T, Mori T, Woltjen K, Nakagawa M, Yamamoto T, Takahashi K, Yamanaka S, Saitou M (2015) Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 17:178-194.   DOI
27 Hayashi K, Saitou M (2013) Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells. Nat Protoc 8:1513-1524.   DOI
28 Hickford DE, Frankenberg S, Pask AJ, Shaw G, Renfree MB (2011) DDX4 (VASA) is conserved in germ cell development in marsupials and monotremes. Biol Reprod 85:733-743.   DOI
29 Hubner K, Fuhrmann G, Christenson LK, Kehler J, Reinbold R, De La Fuente R, Wood J, Strauss JF III, Boiani M, Scholer HR (2003) Derivation of oocytes from mouse embryonic stem cells. Science 300:1251-1256.   DOI
30 Irie N, Weinberger L, Tang WWC, Kobayashi T, Viukov S, Manor YS, Dietmann S, Hanna JH, Surani MA (2015) SOX17 is a critical specifier of human primordial germ cell fate. Cell 160:253-268.   DOI
31 Morohaku K, Tanimoto R, Sasaki K, Kawahara-Miki R, Kono T, Hayashi K, Hirao Y, Obata Y (2016) Complete in vitro generation of fertile oocytes from mouse primordial germ cells. Proc Natl Acad Sci USA 113:9021-9026.   DOI
32 Murakami K, Gunesdogan U, Zylicz JJ, Tang WWC, Sengupta R, Kobayashi T, Kim S, Butler R, Dietmann S, Surani MA (2016) NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers. Nature 529:403-407.   DOI
33 Noce T, Okamoto-Ito S, Tsunekawa N (2001) Vasa homolog genes in mammalian germ cell development. Cell Struct Funct 26:131-136.   DOI
34 Okamura D, Tokitake Y, Niwa H, Matsui Y (2008) Requirement of Oct3/4 function for germ cell specification. Dev Biol 317:576-584.   DOI
35 Pisarska MD, Barlow G, Kuo FT (2011) Minireview: Roles of the forkhead transcription factor FOXL2 in granulosa cell biology and pathology. Endocrinology 152:1199-1208.   DOI