Browse > Article
http://dx.doi.org/10.12717/DR.2018.22.3.225

Development and Characterization of a New Cell Line from Olive Flounder Paralichthys olivaceus  

Kim, Ju-Won (Biotechnology Research Division, National Institute of Fisheries Science)
Oh, Bang Geun (Biotechnology Research Division, National Institute of Fisheries Science)
Kim, Julan (Biotechnology Research Division, National Institute of Fisheries Science)
Kim, Dong-Gyun (Biotechnology Research Division, National Institute of Fisheries Science)
Nam, Bo-Hye (Biotechnology Research Division, National Institute of Fisheries Science)
Kim, Young-Ok (Biotechnology Research Division, National Institute of Fisheries Science)
Park, Jung Youn (Biotechnology Research Division, National Institute of Fisheries Science)
Cheong, JaeHun (Dept. of Integrated Biological Science, Pusan National University)
Kong, Hee Jeong (Biotechnology Research Division, National Institute of Fisheries Science)
Publication Information
Development and Reproduction / v.22, no.3, 2018 , pp. 225-234 More about this Journal
Abstract
A new embryonic cell line (OFEC-17FEN) derived from olive flounder Paralichthys olivaceus was developed. OFEC-17FEN cells were subcultured for <30 passages over ~200 days. OFEC-17FEN cells had a doubling time of 114.34 h and modal diploid chromosome number was 48. The pluripotency genes POU5f1 and NANOG were expressed in OFEC-17FEN cells. However, the lack of several pluripotency-related genes expression indicates that OFEC-17FEN cells are not stem cells. OFEC-17FEN cells transfected with plasmid pEGFP-c1 exhibited a strong green fluorescent signal at 48 h after transfection. Accordingly, OFEC-17FEN cells may be useful for both basic research and biotechnological application.
Keywords
Olive flounder; Embryo; Primary cell culture; Cell line;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bryson SP, Joyce EM, Martell DJ, Lee LEJ, Holt SE, Kales SC, Fujiki K, Dixon B, Bols NC (2006) A cell line (HEW) from embryos of haddock (Melanogrammus aeglefinius) and its capacity to tolerate environmental extremes. Mar Biotechnol 8:641-653.   DOI
2 Chen HT (2005) Practical program evaluation: Assess and improve program planning, implementation, and effectiveness. Prev Chronic Dis 3:A25.
3 Chen SL, Ren GC, Sha ZX, Shi CY (2004) Establishment of a continuous embryonic cell line from Japanese flounder Paralichthys olivaceus for virus isolation. Dis Aquat Organ 60:241-246.   DOI
4 Chen SL, Sha ZX, Ye HQ (2003a) Establishment of a pluripotent embryonic cell line from sea perch (Lateolabrax japonicus) embryos. Aquaculture 218:141-151.   DOI
5 Chen SL, Ye HQ, Sha ZX, Hong Y (2003b) Derivation of a pluripotent embryonic cell line from red sea bream blastulas. J Fish Biol 63:795-805.   DOI
6 Fan L, Jiang J, Gao J, Song H, Liu J, Yang L, Li Z, Chen Y, Zhang Q, Wang X (2015) Identification and characterization of a PRDM14 homolog in Japanese flounder (Paralichthys olivaceus). Int J Mol Sci 16:9097-9118.   DOI
7 Fan Z, Liu L, Huang X, Zhao Y, Zhou L, Wang D, Wei J (2017) Establishment and growth responses of Nile tilapia embryonic stem-like cell lines under feeder-free condition. Dev Growth Differ 59:83-93.   DOI
8 Foresti F, Oliveira C, de Almeida-Toledo LF (1993) A method for chromosome preparations from large fish specimens using in vitro short-term treatment with colchicine. Experientia 49:810-813.   DOI
9 Gao J, Wang J, Jiang J, Fan L, Wang W, Liu J, Zhang Q, Wang X (2013) Identification and characterization of a nanog homolog in Japanese flounder (Paralichthys olivaceus). Gene 531:411-421.   DOI
10 Gao J, Wang Z, Shao K, Fan L, Yang L, Song H, Liu M, Wang Z, Wang X, Zhang Q (2014) Identification and characterization of a Sox2 homolog in the Japanese flounder Paralichthys olivaceus. Gene 544:165-176.   DOI
11 Gomez-Lechon MJ, Donato MT, Lahoz A, Castell JV (2008) Cell lines: A tool for in vitro drug metabolism studies. Curr Drug Metab 9:1-11.   DOI
12 Higaki S, Shimada M, Koyama Y, Fujioka Y, Sakai N, Takada T (2015) Development and characterization of an embryonic cell line from endangered endemic cyprinid Honmoroko Gnathopogon caerulescens (Sauvage, 1883). In Vitro Cell Dev Biol Anim 51:763-768.   DOI
13 Holen E, Kausland A, Skjaerven K (2010) Embryonic stem cells isolated from Atlantic cod (Gadus morhua) and the developmental expression of a stage-specific transcription factor ac-Pou2. Fish Physiol Biochem 36:1029-1039.   DOI
14 Hong Y, Winkler C, Schartl M (1996) Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes). Mech Dev 60:33-44.   DOI
15 Kang MS, Oh MJ, Kim YJ, Kawai K, Jung SJ (2003) Establishment and characterization of two new cell lines derived from flounder, Paralichthys olivaceus (Temminck & Schlegel). J Fish Dis 26:657-665.   DOI
16 Kasai H, Yoshimizu M (2001) Establishment of two Japanese flounder embryo cell lines. Bull Fish Sci Hokkaido Univ 52:67-70.
17 Kim JE, Lee YM, Lee JH, Noh JK, Kim HC, Park CJ, Park JW, Kim KK (2014) Development and validation of single nucleotide polymorphism (SNP) Markers from an expressed sequence tag (EST) database in olive flounder (Paralichthys olivaceus) Dev Reprod 18:275-286.   DOI
18 Liu J, You F, Wang XC, Xu YL, Zhang PJ (1999) Chromosome and karyotype evidence of artificial-induced gynogenesis in the olive flounder Paralichthys olivaceus (T. et S). Oceanol Limnol Sin 30:72-79.
19 Lachnit M, Kur E, Driever W (2008) Alterations of the cytoskeleton in all three embryonic lineages contribute to the epiboly defect of Pou5f1/Oct4 deficient MZspg zebrafish embryos. Dev Biol 315:1-17.   DOI
20 Lee D, Kim MS, Nam YK, Kim DS, Gong SP (2013) Establishment and characterization of permanent cell lines from Oryzias dancena embryos. Fish Aquatic Sci 16:177-185.
21 Sassen WA, Lehne F, Russo G, Wargenau S, Dubel S, Koster RW (2017) Embryonic zebrafish primary cell culture for transfection and live cellular and subcellular imaging. Dev Biol 430:18-31.   DOI
22 Park IS, Hur JW, Choi JW (2012) Hematological responses, survival, and respiratory exchange in the olive flounder, Paralichthys olivaceus, during starvation. Asian-Australas J Anim Sci 25:1276-1284.   DOI
23 Peng L, Zheng Y, You F, Wu Z, Zou Y, Zhang P (2016) Establishment and characterization of a testicular Sertoli cell line from olive flounder Paralichthys olivaceus. Chin J Oceanol Limnol 34:1054-1063.   DOI
24 Rajpert-De Meyts E, Hanstein R, Jorgensen N, Graem N, Vogt PH, Skakkebaek NE (2004) Developmental expression of POU5F1 (OCT-3/4) in normal and dysgenetic human gonads. Hum Reprod 19:1338-1344.   DOI
25 Ristow SS, de Avila J (1994) Susceptibility of four new salmonid cell lines to infectious hematopoietic necrosis virus. J Aquat Anim Health 6:260-265.   DOI
26 Robertson DR (1998) Do coral-reef fish faunas have a distinctive taxonomic structure? Coral Reefs 17:179-186.   DOI
27 Servili A, Bufalino MR, Nishikawa R, de Melo IS, Munoz-Cueto JA, Lee LEJ (2009) Establishment of long term cultures of neural stem cells from adult sea bass, Dicentrarchus labrax. Comp Biochem Physiol A Mol Integr Physiol 152:245-254.   DOI
28 Shimizu C, Shike H, Malicki DM, Breisch E, Westerman M, Buchanan J, Ligman HR, Phillips RB, Carlberg JM, Olst JV, Burns JC (2003) Characterization of a white bass (Morone chrysops) embryonic cell line with epithelial features. In Vitro Cell Dev Biol Anim 39:29-35.   DOI
29 Sun L, Bradford CS, Ghosh C, Collodi P, Barnes DW (1995) ES-like cell cultures derived from early zebrafish embryos. Mol Mar Biol Biotechnol 4:193-199.
30 Suzuki T, Komada H, Takai R, Arii K, Kozima TT (1995) Relation between toxicity of cryoprotectant DMSO and its concentration in several fish embryos. Fish Sci 61:193-197.
31 Tong SL, Miao HZ, Li H (1998) Three new continuous fish cell lines of SPH, SPS and RSBF derived from sea perch (Lateolabrax japaonicus) and red sea bream (Pagrosomus major). Aquaculture 169:143-151.   DOI
32 Wang XL, Wang N, Sha ZX, Chen SL (2010) Establishment, characterization of a new cell line from heart of half smooth tongue sole (Cynoglossus semilaevis). Fish physiol biochem 36:1181-1189.   DOI
33 Yang J, Gao C, Chai L, Ma Y (2010) A novel SALL4/OCT4 transcriptional feedback network for pluripotency of embryonic stem cells. PLoS ONE 5:e10766.   DOI
34 Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318-324.   DOI
35 Wolf K, Quimby MC (1962) Established eurythermic line of fish cells in vitro. Science 135:1065-1066.   DOI
36 Yang J, Chai L, Liu F, Fink LM, Lin P, Silberstein LE, Amin HM, Ward DC, Ma Y (2007) Bmi-1 is a target gene for SALL4 in hematopoietic and leukemic cells. Proc Nati Acad Sci USA 104:10494-10499.   DOI
37 Yu F, Li J, Chen H, Fu J, Ray S, Huang S, Ai W (2011a) Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene 30:2161-2172.   DOI
38 Yu J, Chau KF, Vodyanik MA, Jiang J, Jiang Y (2011b) Efficient feeder-free episomal reprogramming with small molecules. PLoS ONE 6:e17557.   DOI
39 Zhang T, Rawson DM (1995) Studies on chilling sensitivity of zebrafish (Brachydanio rerio) embryos. Cryobiology 32:239-246.   DOI
40 Zheng WJ, Sun L (2011) Evaluation of housekeeping genes as references for quantitative real time RT-PCR analysis of gene expression in Japanese flounder (Paralichthys olivaceus). Fish Shellfish Immunol 30:638-645.   DOI
41 Zheng Y, Peng LM, You F, Zou YX, Zhang PJ, Chen SL (2015) Establishment and characterization of a fish-cell line from the brain of Japanese flounder Paralichthys olivaceus. J Fish Biol 87:115-122.   DOI
42 Bejar J, Hong Y, Alvarez MC (2002) An ES-like cell line from the marine fish Sparus aurata: Characterization and chimaera production. Transgenic Res 11:279-289.   DOI
43 Akiduki G (2010) Egg extract promotes cell migration and growth in primary culture of early embryos in the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Appl Entomol Zool 45:153-161.   DOI
44 Alvarez MC, Bejar J, Chen S, Hong Y (2007) Fish ES cells and applications to biotechnology. Mar Biotechnol 9:117-127.   DOI