Browse > Article
http://dx.doi.org/10.7742/jksr.2022.16.6.799

Efficacy Study of Osteradionecrosis Using Fibrin and SDF-1  

Hong-Moon, Jung (Department of Radiological Science, Daegu Health College)
Publication Information
Journal of the Korean Society of Radiology / v.16, no.6, 2022 , pp. 799-805 More about this Journal
Abstract
Radiation therapy of human tissues, including bone tissue, is accompanied by side effects on normal tissues. It has a more lethal effect on stem cells, which play an essential role in tissue regeneration, including the basal cells constituting the tissue. In this study, the mouse parietal model, which implemented an artificial osteoradionecrosis model on the parietal region of the mouse, was artificially defected and then the bone regeneration was tested. In order to overcome the implemented osteoradionecrosis, a fibrin scaffold, widely used as a biomaterial, and stromal cell-derived factor-1 (SDF-1), which is used as a long-term treatment for damaged, were mixed to verify the osteoradionecrosis regeneration effect on the parietal of mouse. In order to expect a synergistic effect in the fibrin scaffolds, a fibrin scaffolds was prepared after maintaining the concentration of SDF-1 (1 ㎍/ml) in the fibrinogen solution. In this study, after artificially creating a osteoradionecrosis model in the parietal region of mouse, fibrin scaffolds were incorporated to analyze the effect of bone regeneration within 4 weeks, the initial stage of bone regeneration. In conclusion, the combined use of these two substances did not show a dramatic regenerative effect in inducing the regeneration of osteoradionecrosis in the parietal region of mouse. However, positive results were obtained that can be maintain the bone regeneration effect environment at the initial stage. Therefore, the combined use of the fibrin scaffold and SDF-1 is considered to be a suitable candidate for the effect of overcoming osteoradionecrosis.
Keywords
Stromal Cell-derived Factor-1(SDF-1); Fibrin scaffold; Osteoradionecrosis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 K. Muller, K. V. Meineke, "Advances in the management of localized radiation injuries", Health Physics: the radiation safety journal, Vol. 98, No. 6, pp. 843-850, 2010. http://dx.doi.org/10.1097/HP.0b013e3181adcba7    DOI
2 W. W. Hu, B. B. Ward, Z. Wang, P. H. Krebsbach, "Bone regeneration in defects compromised by radiotherapy", Journal of Dental Research, Vol. 89, No. 1, pp. 77-81, 2010. http://dx.doi.org/10.1177/0022034509352151    DOI
3 H. M. Jung, "Efficiency Evaluation of Irradiated on Mouse Calvarial Model by BMP-2", Journal of the Korean Society of Radiology, Vol. 13, No. 5, pp. 811-817, 2019. http://dx.doi.org/10.7742/jksr.2019.13.5.811    DOI
4 K. M. Woo, V. J. Chen, H. M. Jung, T. I. Kim, H. I. Shin, "Comparative evaluation of nanofibrous scaffolding for bone regeneration in critical-size calvarial defects", Tissue Engineering, Part A [continuation of Tissue Engineering, Vol. 15, No. 8, pp. 2155-2162, 2009. http://dx.doi.org/10.1089/ten.tea.2008.0433    DOI
5 Y. Hosokawa, I. Hosokawa, K. Ozaki, H. Nakae, K. Murakami, Y. Miyake, T. Matsuo, " CXCL12 and CXCR4 expression by human gingival fibroblasts in periodontal disease", clinical and experimental immunology, Vol. 141, No.3,pp.467-474,2005 
6 C. S. Ki, S. Y. Park, H. J. Kim, H. M. Jung, K. M. Woo, J. W. Lee, Y. H. Park, "Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration", Biotechnology Letters, Vol. 30, No. 3, pp. 405-410, 2008. http://dx.doi.org/10.1007/s10529-007-9581-5    DOI
7 H. M. Jung, "Evaluation the Effectiveness of Fibrinogen to Overcome Bone Radiation Damage", Journal of the Korean Society of Radiology, Vol. 15, No. 4, pp. 537-545, 2021. http://dx.doi.org/10.7742/jksr.2021.15.4.539    DOI
8 H. M. Jung, J. E. Lee, S. J. Lee, J. T. Lee, T. Y. Kwon, T. G. Kwon, "Development of an experimental model for radiation-induced inhibition of cranial bone regeneration", Maxillofacial Plastic and Reconstructive Surgery, Vol. 40, No. 1, pp. 1-8, 2018. http://dx.doi.org/10.1186/s40902-018-0173-1    DOI
9 L. Rivina, R. Schiestl, "Mouse models for efficacy testing of agents against radiation carcinogenesis - a literature review", International Journal of Environmental Research and Public Health, Vol. 10, No. 1, pp. 107-143. 2012. http://dx.doi.org/10.3390/ijerph10010107    DOI
10 H. D. Hwang, J. T. Lee, J. T. Koh, H. M. Jung, H. J. Lee ,T. G. Kwon, "Sequential Treatment with SDF-1 and BMP-2 Potentiates Bone Formation in Calvarial Defects", Tissue Engineering, Part A [continuation of Tissue Engineering, Vol. 21, No. 13, pp. 2125-2135. 2015. http://dx.doi.org/10.1089/ten.tea.2014.0571    DOI
11 C. H. Lee, M. U. Jin, H. M. Jung, J. T. Lee, T. G. Kwon, "Effect of dual treatment with SDF-1 and BMP-2 on ectopic and orthotopic bone formation", PLOS ONE, Vol. 10, No. 3, pp. 120051, 2015. http://dx.doi.org/10.1371/journal.pone.0120051    DOI
12 W. W. Hu, B. B. Ward, Z. Wang, P. H. Krebsbach, "Bone regeneration in defects compromised by radiotherapy", Journal of Dental Research, Vol. 89, No. 1, pp. 77-81, 2010. http://dx.doi.org/10.1177/0022034509352151    DOI