Browse > Article
http://dx.doi.org/10.7742/jksr.2021.15.4.429

Performance Evaluation of Lead (II) Oxide Dosimeter for Digital Quality Assurance in Brachytherapy  

Han, Moo-Jae (Department of Radiation Oncology, Collage of Medicine, Inje University)
Yang, Seung-Woo (Department of Radiation Oncology, Collage of Medicine, Inje University)
Park, Sung-Kwang (Department of Radiation Oncology, Busan Paik Hospital, Inje University)
Publication Information
Journal of the Korean Society of Radiology / v.15, no.4, 2021 , pp. 429-435 More about this Journal
Abstract
In intracavitary radiotherapy, incorrect location of the source can cause excessive dose to normal tissue, so it is essential to evaluate the location accuracy of the source. In this study, basic research was performed on digital line dosimeter based on lead (II) oxide (PbO) to improve analog verification method. Therefore, a polycrystalline PbO unit cell dosimeter was manufactured and the measurement performance for Ir-192 sources was evaluated. As a result, the reproducibility satisfies the evaluation criteria of 1.5% with a relative standard deviation of 0.85%. Linearity showed excellent results with a linear coefficient of R2 of 0.9998. In the case of distance dependence evaluation, the power function R2 showed 0.9855 for PbO and 0.9974 for diode, and the overall average difference was 1.66% for PbO and 2.18% for diode. This study presents the basic detection performance of the polycrystalline PbO dosimeter for the Ir-192 source and can provide basic data in the field of radiation measurement.
Keywords
Semiconductor; PbO; Dosimeter; Quality assurance; Brachytherapy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. J. Lee, S. H. An, R. N. Lee, "Monte Carlo Evaluation for the Effect of Positional Inaccuracy of Source on Patient's Dose in High-Dose-Rate Brachytherapy", Journal of the Korean Physical Society, Vol. 55, No. 6, pp. 2361-2365, 2009. http://dx.doi.org/10.3938/jkps.55.2361   DOI
2 K. Yogo, A. Matsushita, Y. Tatsuno, T. Shimo, S. Hirota, M. Nozawa, S. Ozawa, H. Ishiyama, H. Yasuda, Y. Nagata, K. Hayakawa, "Imaging Cherenkov emission for quality assurance of high-dose-rate brachytherapy", Scientific reports, Vol. 10, No. 1, pp. 1-10, 2020. http://dx.doi.org/10.1038/s41598-020-60519-z   DOI
3 F. M. Khan, J. P. Gibbons, Quality Assurance, Chapter 17 of, Khan's the physics of radiation therapy, 5th Ed., Lippincott Williams & Wilkins, pp. 371-404, 2014.
4 Radiotherapy, External Beam. An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water, IAEA Technical Report Series 398, Austria, 2006.
5 Z. Li, "Radiation damage effects in Si materials and detectors and rad-hard Si detectors for SLHC", Journal of Instrumentation, Vol. 4, No. 3, pp. 3011, 2009. http://dx.doi.org/10.1088/1748-0221/4/03/P03011   DOI
6 G. Hajdok, J. J. Battista, I. A. Cunningham, "Fundamental X-ray interaction limits in diagnostic imaging detectors: Spatial resolution", Medical Physics, Vol. 35, No. 7, pp. 3180-3193, 2008. http://dx.doi.org/10.1118/1.2924219   DOI
7 S. Nag, "High Dose Rate Brachytherapy: Its Clinical Applications and Treatment Guidelines", Technology in cancer research & treatment, Vol. 3, No. 3, pp. 449-455, 2004. http://dx.doi.org/10.1177/153303460400300305   DOI
8 R. Nath, L. L. Anderson, J. A. Meli, A. J. Olch, J. A. Stitt, J. F. Williamson, "Code of practice for brachytherapy physics: report of the AAPM Radiation Therapy Committee Task Group No. 56. American Association of Physicists in Medicine", Medical Physics, Vol. 24, No. 10, pp. 1557-1598, 1997. https://doi.org/10.1118/1.597966   DOI
9 J. Venselaar, J. Perez-Calatayud, "A practical guide to quality control of brachytherapy equipment, ESTRO booklet No. 8", Brussels: European Society for Therapeutic Radiology and Oncology, 2004.
10 M. D. C. Evans, S. Devic, E. B. Podgorsak, "High dose-rate brachytherapy source position quality assurance using radiochromic film", Medical Dosimetry, Vol. 32, No. 1, pp. 13-15, 2007. http://dx.doi.org/10.1016/j.meddos.2006.10.001   DOI
11 K. T. Kim, Y. J. Heo, M. J. Han, K. M. Oh, Y. K. Kim, S. W. Kim, S. K. Park, "Development and evaluation of multi-energy PbO dosimeter for quality assurance of image-guide radiation therapy devices", Journal of Instrumentation, Vol 12, No. 4, pp. 3024, 2017. http://dx.doi.org/10.1088/1748-0221/12/04/C04024   DOI
12 M. Schieber, A. Zuck, H. Gilboa, G. Zentai, "Reviewing polycrystalline mercuric iodide x-ray detectors", IEEE Transaction on Nuclear Science, Vol. 53, No. 4, pp. 2385-2391, 2006.   DOI
13 L. A. R. da Rosa, D. F. Regulla, U. A. Fill, "Reproducibility study of TLD-100 micro-cubes at radiotherapy dose level", Applied radiation and isotopes, Vol. 50, No. 3, pp. 573-557, 1999. https://doi.org/10.1016/s0969-8043(98)00068-2   DOI
14 M. Zabihzadeh, A. Yaollahpour, L. Kargar, "The Effect of Tissue Heterogeneitieson Dose Distribution of Iridium-192 Source in Brachytherapy", Vol. 6, No. 2, pp. 205-213, 2013.   DOI
15 U. N. Roy, G. S. Camarda, Y. Cui, R. Gul, G. Yang, J. Zazvorka, V. Dedic, J. Franc, R. B. James, "Evaluation of CdZnTeSe as a high-quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects", Scientific reports, Vol. 9, No. 1, pp. 1-7, 2019. http://dx.doi.org/10.1038/s41598-019-43778-3   DOI
16 M. Simon, R. A. Ford, A. R. Franklin, S. P. Grabowski, B. Menser, G. Much, A. Nascetti, M. Overdick, M. J. Powell, D. U. Wiechert, "PbO as direct conversion x-ray detector material", In Medical Imaging 2004: Physics of Medical Imaging, Vol. 5368, pp. 188-199, 2004.   DOI
17 O. Semeniuk, O. Grynko, G. Decrescenzo, G. Juska, K. Wang, A. Reznik. "Characterization of polycrystalline lead oxide for application in direct conversion X-ray detectors", Scientific reports, Vol. 7, No. 1, pp. 1-10, 2017. https://doi.org/10.1038/s41598-017-09168-3   DOI