Browse > Article
http://dx.doi.org/10.7742/jksr.2020.14.4.477

Analysis of Image Quality According to Imaging Parameters in Digital Tomosynthesis  

Lee, Dahye (Department of Radiological Science, Konyang University)
Lee, Seungwan (Department of Radiological Science, Konyang University)
Kim, Burnyoung (Department of Medical Science, Konyang University)
Yim, Dobin (Department of Medical Science, Konyang University)
Nam, Kibok (Department of Radiological Science, Konyang University)
Cho, Jeonghyo (Department of Radiological Science, Konyang University)
Publication Information
Journal of the Korean Society of Radiology / v.14, no.4, 2020 , pp. 477-486 More about this Journal
Abstract
The purpose of this study was to evaluate the effects of reconstruction filters, X-ray source trajectories and intervals in the quality of digital tomosynthesis (DT) images, and the results was clinically validated. The filtered back-projection was implemented by using Ramp, Shepp-Logan, Cosine, Hamming, Hann and Blackman filters, and the X-ray source trajectories were simulated with 1 × 36, 2 × 18, 3 × 12, 4 × 9 and 6 × 6 arrays. The X-ray source intervals were 5, 10, 20, 30 and 40 mm. The depth resolution, spatial resolution and noise of DT image were evaluated by measuring artifact spread function (ASF), full width at half maximum (FWHM) and signal-to-noise ratio (SNR), respectively. The results showed that the spatial resolution and noise properties of DT images were maximized by the Ramp and Blackman filters, respectively, and the depth resolution and noise properties of the DT images obtained with a 1 × 36 X-ray source trajectory were superior to the other trajectories. The depth resolution and noise properties of DT images improved with an increase of X-ray source intervals, and the high X-ray source intervals degraded the spatial resolution of DT images. Therefore, the characteristics of DT images are highly dependent on reconstruction filters, X-ray source trajectories and intervals, and it is necessary to use optimal imaging parameters in accordance with diagnostic purpose.
Keywords
Digital tomosynthesis; Reconstruction filter; X-ray source trajectory; X-ray source intervals;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Males, D. Mileta, M. Grgic, "Digital Breast Tomosynthesis: A Technological Review", Proceedings ELMAR-2011, pp. 41-45, 2011.
2 T. Gomi, M. Nakajima, H. Fujiwara, T. Takeda, K. Saito, T. Umeda, K. Sakaguchi, "Comparison between chest digital tomosynthesis and CT as a screening method to detect artificial pulmonary nodules: a phantom study", The British Journal of Radiology, Vol. 85, No. 1017, pp. 622-629, 2012. http://dx.doi.org/10.1259/bjr/12643098
3 J. T. Dobbins 3rd, "Tomosynthesis imaging: At a translational crossroads", Medical Physics, Vol. 36, No. 6, pp. 1956-1967, 2009. https://doi.org/10.1118/1.3120285   DOI
4 R. A. Powsner, M. R. Palmer, E. R. Powsner, Essentials of Nuclear Medicine Physics and Instrumentation, 3rd Ed., Wiley-Blackwell, New Jersey, pp. 11-15, 2013.
5 E. G. DePuey, "Ramp filter artifact associated with filtered backprojection, resolved with iterative reconstruction", Journal of Nuclear Cardiology, Vol. 26, No. 4, pp. 1383-1391, 2018. http://dx.doi.org/10.1007/s12350-018-1375-8   DOI
6 V. Sarkar, C. Shi, P. Rassiah-Szegedi, A. Diaz, T. Eng, N. Papanikolaou, "The effect of a limited number of projections and reconstruction algorithms on the image quality of megavoltage digital tomosynthesis", Journal of Applied Clinical Medical Physics, Vol. 10, No. 3, pp. 155-172, 2009. https://doi.org/10.1120/jacmp.v10i3.2970   DOI
7 Z. Messali, N. Chetih, A. Serir, A. Boudjelal, "A Quantitative Comparative Study of Back Projection, Filtered Back Projection, Gradient and Bayesian Reconstruction Algorithms in Computed Tomography (CT)", International Journal of Probability and Statistics, Vol. 4, No. 1, pp. 12-31, 2015. http://article.sapub.org/10.5923.j.ijps.20150401.02.html
8 I. Reiser, S. Glick, Tomosynthesis Imaging, 1st Ed., Taylor & Francis, Oxfordshire United Kingdom, pp. 65-67, 2014.
9 S. W. Lee, B. Y. Kim, D. B. Yim, Y. J. Lee, "Effect of geometric variations on image characteristics in digital tomosynthesis", Proceeding of SPIE, Vol. 11312, 113122D, 2020. https://doi.org/10.1117/12.2543148
10 S. Wells, P. Elangovan, D. R. Dance, K. Wells, V. Y. Soloviev, K. L. Renforth, K. C. Young, "Modelling the use of stationary, rectangular arrays of x-ray emitters for digital breast tomosynthesis", Proceeding of SPIE, Vol. 11312, 113120R, 2020. https://doi.org/10.1117/12.2548438
11 H. H. Lee, Y. S. Kim, S. H. Choi, D. H. Lee, S. Y. Choi, H. J. Kim, "Effects of angular range on image quality of chest digital tomosynthesis", Proceeding of SPIE, Vol. 9783, 97836C, 2016. https://doi.org/10.1117/12.2216842   DOI
12 D. A. Scaduto, H. Huang, C. Liu, R. Kim, A. Hebecker, T. Mertelmeier, S. Vogt, P. Fisher, W. Zhao, "Impact of angular range of digital breast tomosynthesis on mass detection in dense breasts", Proceeding of SPIE, Vol. 10718, 107181V, 2018. https://doi.org/10.1117/12.2318243
13 Y. H. Hu, B. Zhao, W. Zhao, "Image artifacts in digital breast tomosynthesis: Investigation of the effects of system geometry and reconstruction parameters using a linear system approach", Medical Physics, Vol. 35, No. 12, pp. 5242-5452, 2008. https://doi.org/10.1118/1.2996110   DOI
14 H. S. Park, Y. S. Kim, H. J. Kim, Y. W. Choi, J. G. Choi, "Optimization of configuration parameters in a newly developed digital breast tomosynthesis system", Journal of Radiation Research, Vol. 55, No. 3, pp. 589-599, 2014. https://doi.org/10.1093/jrr/rrt130   DOI
15 S. G. Armato, K. Drukker, F. Li, L. Hadjiiski, G. D. Tourassi, J. S. Kirby, L. P. Clarke, R. M. Engelmann, M. L. Giger, G. Redmond, K. Farahani, "LUNGx Challenge for computerized lung nodule classification", Journal of Medical Imaging, Vol. 3, No. 4, pp. 044056, 2016. https://doi.org/10.1117/1.JMI.3.4.044506
16 S. G. Armato III, L. Hadjiiski, G. D. Tourassi, K. Drukker, M. L. Giger, F. Li, G. Redmond, K. Farahani, J. S. Kirby, L. P. Clarke, "SPIE-AAPM-NCI Lung Nodule Classification Challenge Dataset", The Cancer Imaging Archive, 2015. https://doi.org/10.7937/K9/TCIA.2015.UZLSU3FL
17 A. Maldera, P. De. Marco, P. E. Colombo, D. Origgi, A. Torresin, "Digital breast tomosynthesis: Dose and image quality assessment", Physica Medica, Vol. 33, pp. 56-67, 2017. https://doi.org/10.1016/j.ejmp.2016.12.004   DOI
18 T. Gomi, H. Hirano, "Clinical Potential of Digital Linear Tomosynthesis Imaging of Total Joint Arthroplasty", Journal of Digital Imaging, Vol. 21, No. 3, pp. 312-322, 2008. https://dx.doi.org/10.1007%2Fs10278-007-9040-9   DOI
19 J. T. Rakowski, M. J. Dennis, "A comparison of reconstruction algorithms for C-arm mammography tomosynthesis", Medical Physics, Vol. 33, No. 8, pp. 3018-3032, 2006. https://doi.org/10.1118/1.2219090   DOI
20 H. H. Lee, Y. S. Kim, Y. J. Lee, S. H. Choi, S. W. Lee, H. S. Park, H. J. Kim, J. G. Choi, Y. W. Choi, "A Study of Various Filter Setups with FBP Reconstruction for Digital Breast Tomosynthesis", Progress in Medical Physics, Vol. 25, No. 4, pp. 271-280, 2014. http://dx.doi.org/10.14316/pmp.2014.25.4.271   DOI
21 Y. Zhang, H. P. Chan, B. Sahiner, J. Wei, J. Ge, L. M. Hadjiiski, C. Zhou, "Investigation of the Z-axis resolution of breast tomosynthesis mammography systems", Proceeding of SPIE, Vol. 6510, 65104A, 2007. https://doi.org/10.1117/12.713816   DOI