Browse > Article
http://dx.doi.org/10.7742/jksr.2014.8.7.455

Thermoluminescene Properties of Li6Gd(BO3)3:Ce3+ Scintillation Single Crystal  

Kim, Sunghwan (Cheongju University)
Lee, Joonil (Daegu Health College)
Publication Information
Journal of the Korean Society of Radiology / v.8, no.7, 2014 , pp. 455-459 More about this Journal
Abstract
We grew the $Li_6Gd(BO_3)_3:Ce^{3+}$ scintillator and determined the scintillation and thermoluminescence properties for X-rays. The emission spectrum of $Li_6Gd(BO_3)_3:Ce^{3+}$ is located in the range of 370~500 nm, peaking at 423 nm an 455 nm, due to the $4f{\rightarrow}5d$ transition of $Ce^{3+}$ ions. The fluorescence decay time of the crystal is composed three components. The fast component is 60 ns (25%), the intermediate component is 787 ns (29%) and the slow component is $5.9{\mu}s$ (46%) of the crystal. The after-glow is caused by the electron and hole traps in the crystal lattice. We determined physical parameters of the traps in the crystal. The thermoluminescence trap are composed two traps. The determined activation energy (E), kinetic order (m) and frequency factor (s) of the first trap are 0.65 eV, 1.01 and $6.9{\times}10^8s^{-1}$. And, the determined activation energy, kinetic order and frequency factor of the second trap are 0.96 eV, 1.79 and $3.1{\times}10^{12 }s^{-1}$, respectively.
Keywords
lithium gadolinium borate; scintillator; thermoluminescence; after-glow;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shekhovtsov AN, Tolmachev AV, Dubovik MF, Dolzhenkova FF, Korshikova TI, Grinyov BV, Baumer VN, Zelenskaya OV, "Structure and growth of pure and $Ce^{3+}$-doped $Li_6Gd(BO_3)_3$ single crystals", J. Crys. Growth Vol. 242, pp.167-171, 2002.   DOI   ScienceOn
2 Singh AK, Tyagi M, Singh SG, Desai DG, Sen S, Nayak BK, Urffer M, Melcher CL, Gadkari SC, "Cerium doped lithium gadolinium borate: A neutron scintillator", Proc. of the DAE Symp. on Nucl. Phys. Vol. 58, 2013.
3 Ogorodnikov IN, Poryvay NE, Sedunova IN, Tolmachev AV, Yavetskiy RP, "Thermally stimulated recombination processes and luminescence in $Li_6(Y,Gd,Eu)(BO_3)_3$ crystals", Physics of the Solid State, Vol. 53, pp.263-270, 2011.   DOI
4 Shendrik R, Radzhabov EA, Nepomnyashchikh AI, "Scintillation properties of pure and $Ce^{3+}$-doped $SrF_2$ crystals", Rad. Meas., Vol. 56, pp.58-61, 2013.   DOI   ScienceOn
5 Sreebunpeng K, Chewpraditkul W, Nikl M, "Luminescence and scintillation properties of advanced $Lu_3Al_5O_{12}:Pr^{3+}$ single crystal scintillators", Rad. Meas., Vol. 60, pp.42-45, 2014.   DOI   ScienceOn
6 Carel W.E. van Eijk, "Development of inorganic scintillators", Nucl. Instr. and Meth. in Phys. Res. Sec. A, Vol. 392, pp.285-290, 1997.   DOI   ScienceOn
7 Bollinger LM, Thomas GE, "Measurement of the time dependence of scintillation intensity by a delayed-coincidence method", Rev. Sci. Instr., Vol. 32, pp.1044-1050, 1961.   DOI
8 Brun R, Rademakers F, ROOT user guide, CERN, http://root.cern.ch/drupal/content/users-guide, 2013.
9 Kunkely H, Vogler A, "Can halides serve as a charge transfer acceptor? Metal-centered and metal-to-ligand charge transfer excitation of cerium(III) halides", Inorganic Chem. Comm., Vol. 9, pp.1-3, 2006.   DOI   ScienceOn
10 Chung KS, Choe HS, Lee JI, Kim JL, "An algorithm for the de-convolution of the optically stimulated luminescence glow curves involving the mutual interactions among the electron traps", Rad. Meas., Vol. 46, pp.1598-1601, 2011.   DOI   ScienceOn
11 Chen R, "Glow curves with general order kinetics", J. Electrochem. Soc., Vol. 116, pp.1254-1257, 1969.   DOI